(June 12, 2021) Spring 2021 mBIT

Advice

Look at the pretests. You can access the first four pretests for each problem once
you’ve made a submission. Some of the pretests are reduced in size to help you debug
your program. Keep in mind that your final submission will be judged on a separate set
of 40 hidden system tests for the official rankings.

Understand the new scoring system. Your program will only be submitted to the
40 system tests once it passes all 10 pretests. You will get one point for each system test
you pass, plus 20 points if you get all of them correct (for a maximum of 60 points per
problem). Results of the system tests will not be released until the end of the contest.
Unlike last year, you will not get any points for programs that do not pass all pretests.
Ties will be broken by the time of the last submission of a program which passes pretests.

Watch out for integer overflow. When a problem uses large values, make sure you
use long (in Java) or long long (in C++). Python integers cannot overflow.

Use fast I/0. For problems with large input sizes, you may want to use faster I/O
methods to prevent a time limit error. Here is how to use fast I/O in each language:

e In Python, write from sys import stdin, stdout at the top of your program.
When reading input, use stdin.readline (). To write output, use stdout.write().

e In Java, use a custom Scanner class as shown here.

e In C++, write ios_base: :sync_with_stdio(false); cin.tie(NULL) ; at the top
of your main method. Then you can use cin and cout as usual. Printing a single
newline character (\n) is faster than endl.

Print extra digits for non-integer values in C++. If you are printing a double
value in C++, by default it will only output a few digits (which may result in a wrong
answer from our grader). To output real values with more precision, write cout <<
setprecision(16); at the top of your program. Our grader will accept real values in
fixed or scientific notation (so 1234.56789, 1.23456789E3, and 1.23456789e+003 are
treated the same). There will always be a tolerance for small relative errors between your
solution and the correct answer.

Special considerations for Python. Make sure you're using fast I/O methods as
described above. You can increase the recursion limit if your functions use repeated
recursion. Additionally, we strongly recommend submitting your solutions in PyPy,
which is typically faster than Python. Make sure you strip your input of trailing white
space (this is especially important for our grader). Finally, exit() and quit() do not
work with our grader.

Language versions. Our grader uses C++17 (compiled with the -03 tag), Java 11,
and Python 3.9. Our version of PyPy implements Python 3.7.

Ask for clarifications! If you are confused about a problem statement, do not hesitate
to message us.


https://gist.github.com/alsuga/85ff07d7a080ec06c762
https://www.geeksforgeeks.org/python-handling-recursion-limit/
https://www.w3schools.com/python/ref_string_strip.asp

