
Spring 2022 mBIT Standard Editorial

May 22, 2022

This editorial provides the intended solutions to each problem as well as accepted
programs in each supported language. In some cases, the given programs may employ
different algorithms than the one described in the editorial. For more complex problems,
multiple solutions may be given, in which case there will be programs for each solution.
Nevertheless, problems are likely to have solutions which are not covered here and we
would be interested to hear about any such solutions the reader may devise.

Contents

1 Ticket Prices 2

2 Whac-a-Mole 3

3 Ferris Wheel 4

4 Behind The Scenes 5

5 Shifting Seats 6

6 Roller Coaster 7

7 Toadstools 8

8 Snapshot 9

9 Park Passes 10

10 Street Performers 11

11 Rating Report 12

12 Sugar Rush 13

13 Not Nim 14

14 Mascot Parade 15

1



(May 22, 2022) Spring 2022 mBIT Standard Editorial

§1 Ticket Prices

To find the cost of someone’s ticket, check which age range they fall into and then use
the corresponding price. Do this for Alice, Bob, and Charlie then add the prices up to
get the total cost.

Time complexity: O(1)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2022s/solutions/TicketPrices.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/TicketPrices.java
https://mbit.mbhs.edu/archive/2022s/solutions/TicketPrices.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§2 Whac-a-Mole

Maintain an array A of length N representing which holes currently have moles in them.
Let Ai = 1 if there is currently a mole in hole i and Ai = 0 if there is not currently a
mole in hole i. Initially set A to be all ones.

For each of the Q updates, update the value at the given index in A, then check if the
game ended. You can check this by either iterating over the entire array to see if every
element is a zero, or by maintaining a counter with the current number of moles out. If
the game ended, print the second this is on then break out of the process because the
game is over. At the end, if the game never ended print -1.

Time complexity: O(NQ) or O(N + Q)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2022s/solutions/WhacAMole.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/WhacAMole.java
https://mbit.mbhs.edu/archive/2022s/solutions/WhacAMole.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§3 Ferris Wheel

Since the wheel spins at a constant rate, pausing after X seconds of spinning results in
making X

K rotations. Now notice you only care about the decimal portion of this number
because complete rotations don’t change final position.

Now we observe that the vertical height of your ending position only depends on how
close you are to half of a rotation. Out of all pauses, the one whose equivalent decimal of
a rotation is closest to 0.5 will result in the highest vertical height.

Time complexity: O(N)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

4

https://mbit.mbhs.edu/archive/202@s/solutions/FerrisWheel.cpp
https://mbit.mbhs.edu/archive/202@s/solutions/FerrisWheel.java
https://mbit.mbhs.edu/archive/202@s/solutions/FerrisWheel.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§4 Behind The Scenes

We can greedily go through the lengths in L and at each length, print the lowest lexico-
graphic (earliest in a dictionary) unused string of that length. Generating the strings in
this way allows us to systematically go through every string of each length before we
have to overlap.

We can execute this process by maintain an array of strings “next” such that next[len]
stores the lexicographic lowest unused string of length len. We initialize next[len] to be
all ‘a’s. After using a string next[len] in our process, we need to update the string stored
in next[len] to the next lexicographic string of length len.

We find this next lexicographic string by iterating through the letters of the string in
reverse order. If the letter we are iterating at is ‘z’, we set this letter to ‘a’ and move to
the letter to the left. If the letter we are iterating at is not ‘z’, we increment this letter
and break out of the process. You can think of this process as adding 1 to a number in
base 26.

Time complexity: O(max(Li)
2 + sum(Li)

2) or O(max(Li)
2 + sum(Li))

Problem: Claire Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2022s/solutions/BehindTheScenes.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/BehindTheScenes.java
https://mbit.mbhs.edu/archive/2022s/solutions/BehindTheScenes.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§5 Shifting Seats

Consider an array P where Pi = Ai − i (0-indexed). It turns out that the problem of
increasing elements of A to make A consecutive is equivalent to increasing elements of
P to make all elements of P equal. This is because if Pi = Ai − i = X for all i and a
constant X, then Ai = X + i for all i. Ai = X + i means A is consecutive.

Once we generate the array P , our task is to minimize the number of seconds to make all
elements of P equal. The ending value of every element of P ends up being the biggest
number in the initial array of P . This is because if it weren’t the case, every friend would
have moved up at least one seat so we could make everyone move up one less seat and
have a more optimal answer. Now our process is to increment every element of P that is
not equal to max(P ) until every element is there. This will take max(P )-min(P ) seconds
because you will be held back by the smallest value in P .

Time complexity: O(N)

Problem: Stephen Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2022s/solutions/ShiftingSeats.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/ShiftingSeats.java
https://mbit.mbhs.edu/archive/2022s/solutions/ShiftingSeats.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§6 Roller Coaster

There are two cases: the train’s wheels are always clockwise to it’s direction or always
counterclockwise to it’s direction. The orientation is uniquely determined by the direction
the train starts travelling in because the problem ensures the train starts on top of the
track. This means a train initially facing left is clockwise and a train initially facing right
is counterclockwise.

From that, we observe that wheels clockwise of right will be underneath the track and
wheels counterclockwise of left will be underneath the track. Now, if we’re clockwise we
simply check if there is ever a time we are facing right and if we’re counterclockwise we
simply check if there is ever a time we are facing left.

Time complexity: O(N)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2022s/solutions/RollerCoaster.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/RollerCoaster.java
https://mbit.mbhs.edu/archive/2022s/solutions/RollerCoaster.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§7 Toadstools

We can use a two pointer’s approach to iterate over all pairs of toadstools. We will have
a first pointer iterate from L = 1 to L = N and at each L we will have a second pointer
iterate from R = L + 1 to R = N . Over our iteration of R, we will keep track of the
toadstool S with the greatest slope from L that we have iterated over so far.

The toadstool at any R can only be seen if the slope from L to R is greater than the
slope L to S. This is because toadstool S obstructs the view of anything under the line
of sight from L to S. However if the slope to R is greater than the slope to S, it means
the line of sight to R is above the line of sight from L to S. In this case we add one to
our answer and replace S with R because it is the new highest sloped toadstool.

Time complexity: O(N2)

Problem: Claire Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2022s/solutions/Toadstools.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/Toadstools.java
https://mbit.mbhs.edu/archive/2022s/solutions/Toadstools.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§8 Snapshot

Consider the list formed by merging the lists of the people’s initial locations and their
locations in the first snapshot and then sorting in non-decreasing order. If the first element
of this list corresponds to a person’s initial location, this person must be travelling in the
positive direction (otherwise the snapshot location would be less than the initial location
so the initial location wouldn’t appear first in the list). If the first element of this list
corresponds to a person’s location in the snapshot, that person must be travelling in
the negative direction (otherwise the snapshot location would be greater than the initial
location so the snapshot location wouldn’t appear first in the list).

After deducing the direction of this first person, we no longer need to consider them in
our process, so we can delete both their initial and snapshot locations from the merged
list. Now we can repeat the process to get the direction of another person, and then
another person, so on until we have every person’s direction. If there is ever a time when
the location needed to satisfy the complementary timestamp of the person corresponding
with first element of the merged list isn’t in the list (if the person associated with the
first element doesn’t have their corresponding initial location and snapshot location in
the list), the snapshot was tampered with.

Now that we have the direction of every person, we can check every other snapshot and
see if they are consistent. We use the time of the snapshot to generate what the locations
of the people should be, sort the list, then check if this list is the same as the one given. If
any snapshot is inconsistent with the directions generated at the beginning, the snapshots
were tampered with. Otherwise, they are consistent so we print the directions.

Note: since actually deleting elements from the merged list at the beginning is slow,
instead mark them as “used” and only consider “unused” elements after that.

Time complexity: O(NK logN)

Problem: Claire Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

9

https://mbit.mbhs.edu/archive/2022s/solutions/Snapshot.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/Snapshot.java
https://mbit.mbhs.edu/archive/2022s/solutions/Snapshot.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§9 Park Passes

Notice that the process of choosing which packages to buy seems recursive. This motivates
dynamic programming. Let DPij be the minimum cost of tickets to cover days 1 through
j while only using the first i ticket packages (packages sorted in increasing order of
expiration date) or 1018 (an arbitrarily large number) if the first i ticket packages don’t
suffice. Our transition is as follows:

If Ei < j, DPij = 1018

If Ei ≥ j, DPij =min(DPi−1j , DPi−1j−Ti + Ci)

The first case is obvious; if the latest-expiring package expires before a day that you
need a ticket, the packages don’t suffice. The second case is split into two subcases. The
first case is if you don’t use package i, in which case you simply take the DP value that
requires the same number of days but doesn’t use package i. The second case is where
you do use package i, in which case you take the DP value that asks for Ti less days
(because we should use these tickets on the latest days we can since this package expires
the latest) and doesn’t use package i anymore (you can’t use a package twice).

If DPNM = 1018, the answer is -1, otherwise the ticket packages are enough to cover all
m days so we should print the value stored in DPNM .

Time complexity: O(NM)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2022s/solutions/ParkPasses.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/ParkPasses.java
https://mbit.mbhs.edu/archive/2022s/solutions/ParkPasses.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§10 Street Performers

First, we can observe that we should greedily put off moving until we are forced to
move. This motivates the following greedy algorithm: repeatedly move to the spot that
maximizes the number of performances you can watch, watch all of these performances,
and then move again to the place that maximizes the size of the next batch of watchable
performances. We can do this until we have watched every performance.

This is clearly very recursive, so we should use dynamic programming. Let DPi be the
answer for the suffix that starts at performance i. Now DPi = DPXi+1 + 1 where Xi is
the maximum index such that all performances from i to Xi are within K of each other.
Now, our task is to find Xi fast.

Let’s iterate backwards from i = N to i = 1 (1-indexed). We will keep track of X by
maintain a set S of the locations of all performances from i to Xi. When we move to
index i, we insert Ai to S. Now While the range of S is greater than K, it means X is
too far so we delete AX from S, and decrement X. We end up with the greatest X that
has a corresponding S such that you can see all performances in S from one location. At
the end, we simply print out the values of our DP.

Time complexity: O(N log(N))

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2022s/solutions/StreetPerformers.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/StreetPerformers.java
https://mbit.mbhs.edu/archive/2022s/solutions/StreetPerformers.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§11 Rating Report

The hierarchy forms a tree; supervisors are parents, subordinates are children, and
first-hand raters are leaves. We can binary search for answer. Notice that if we are trying
to check whether the final result can be greater than or equal to some m, all we care
about is whether each leaf gives a score of at least m. This means we can assign every
value a 0 or 1, depending on whether they give a rating of at least m. Now we can do a
tree dp. Let DPi be the minimum number of ratings of 1 among the leaves of i’s subtree
necessary to make reviewer i have a rating of 1. Let cnti be the number of decided leaves
who gave a rating of 1.

If rater i is a pessimist, DPi = the sum of DPx for all children x of i.
If rater i is an optimist, DPi = min(DPx − cntx) + cnti for all children x of i.

The logic goes as follows: If rater i is a pessimist, then all of reviewer i’s children
must submit a rating of 1 in order for reviewer i to submit a 1. Since the children are
independent, this answer is simply the sum of the DP’s of the children. If rater i is an
optimist, then only one of reviewer i’s children must submit a rating of 1 in order for
reviewer i to submit a 1. We want to waste the least number of ratings of 1 on undecided
leaves for the child that does submit a rating of 1. This value is the minimum (total
leaves that must submit a 1 (DPx) - predecided leaves that submit a 1 (cntx)) out of
all subtrees of children. For the other children, we will make undecided leaves in their
subtrees be 0 because it doesn’t matter. Now, we need to add back all predecided leaves
of rating 1 in i’s subtree, which is cnti by definition.

Now it is possible to achieve a final rating of 1 if and only if DP1 ≤ K −m + 1 because
there are K −m+ 1 first-hand raters who will give a rating of 1 in reviewer one’s subtree.

Time complexity: O(N logK)

Problem: Gabriel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

12

https://mbit.mbhs.edu/archive/2022s/solutions/RatingReport.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/RatingReport.java
https://mbit.mbhs.edu/archive/2022s/solutions/RatingReport.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§12 Sugar Rush

At any point your visited stands will be a consecutive interval (subarray) of the stands.
This is because you will never go past a cotton candy stand without visiting it. Now,
we claim that you will change directions (from travelling right to travelling left or vice
versa) at most log2max(x) times.

The logic for this goes as follows: let your current interval of visited stands be from stand
L to stand R and let stand m be the stand you started at. If you were to switch directions
from right to left, it would mean that XR+1−XR < XR−XL−1 so the difference between
Am and AR would at least double when XR+1 gets visited which will happen during the
next direction change. You can follow the same argument for switching from left to right.

Now we just need a fast way to calculate the stands in which the direction changes
take place. This requires some fidgeting with inequalities. Assuming your current inter-
val is from stands L to R and you are travelling right, the next direction change will
take place after visiting stand P where P is the first index greater than R in which
XP+1−XP < XP −XL−1. This can be arranged to XP+1− 2XP < −XL−1 which is the
same as 2XP −XP+1 > XL−1.

Knowing this, we can find P quickly by using binary search on range max queries on
a sparsetable of values of 2Ai − Ai+1. You can follow the same process for the other
direction change to get that the direction change happens on the latest index P less than
L in which 2 ∗XP −XP−1 ≥ XR+1 and this time, do binary search on range max queries
on a sparesetable of values Ai+1 − 2Ai.

Now for each starting location, we set the initial interval to be [i,i] then alternate
extending the left and right boarders until every stand is visited. We add up the range
between boarders at each extension to find the total distance travelled.

Time complexity: O(N log(Xi) log(N))

Problem: Claire Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

13

https://mbit.mbhs.edu/archive/2022s/solutions/SugarRush.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/SugarRush.java
https://mbit.mbhs.edu/archive/2022s/solutions/SugarRush.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§13 Not Nim

The first key observation is that we can take the number of stones in each pile mod(A+B).
The logic goes as follows: Let the winner of the mod(A + B) case be player X and the
loser be player Y . Player X’s strategy will be as follows to always win: If it is the first
turn or if player Y just took from a pile that previously had less than A+B stones, then
he moves as if all the piles were mod(A + B). Otherwise, if player Y just took from a
pile that had A + B stones or more, he mirrors the move and takes from the same pile.
This strategy always wins because the mirrored moves on piles that had A + B stones or
more are essentially ignored when we look at it through the lens of mod(A+B) (because
a total of A + B stones are taken from the same pile and the turn doesn’t switch), and
player X wins when he plays optimally looking through the lens of mod(A + B), by defi-
nition. This means we can take all piles mod(A+B) and determine the winner from there.

The next observation is that the optimal strategy for both players is greedy. Since all piles
of less than A+B stones, when one player takes from a pile, it “blocks off” any moves by
the other player on that pile. This means when one player takes from a pile they “reserve”
it for themselves and should take from it when they can’t take from any other pile. Now
on a player’s turn, he should take from the biggest pile because it will “block off” the
most number of “reserved moves” the other player would get and they will “reserve for
themselves” the most number of moves to fall back on when all piles have been taken from.

Now the full solution is once we have taken everything mod(A + B), we simulate the
greedy process using a priority queue.

Time complexity: O(N logN)

Problem: Claire Zhang
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

14

https://mbit.mbhs.edu/archive/2022s/solutions/NotNim.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/NotNim.java
https://mbit.mbhs.edu/archive/2022s/solutions/NotNim.py


(May 22, 2022) Spring 2022 mBIT Standard Editorial

§14 Mascot Parade

The mascots will travel in clumps. We will call the furthest right mascot in a clump the
“leader” since the entire clump travels at their speed. Initially all mascots are their own
clump lead by themselves. Once a mascot catches up with the mascot in front of it, the
two mascots merge and become a clump. When the leading mascot in a clump catches
up with the trailing mascot of the clump in front of it, the two clumps become one big
clump. Now notice that throughout the passage of time, this ends up forming a forest.
When a clump lead by mascot x catches up to and merges with a clump lead by mascot
y, we say that x’s parent is y in the forest. If we can generate this forest, it will give us
all necessary information on the leaders of each clump over time.

We can form said forest with a priority queue. The priority queue will store the would-be
times of the merge between consecutive clumps if they were in isolation. We ignore the
times of merges that never happen in isolation. Initially, we put the times of merge
between consecutive mascots into our pq . Until there is nothing left in our pq, we
pop out the soonest merge that would happen from our pq. This is the soonest real
merge because until a merge happens, everything happens the same as it would in isolation.

Let clump X be the clump merging into clump Y . Let the leader of clump X be mascot
x and the leader of clump Y be mascot y. First, we execute the merge by setting the
parent of x to be y and storing the time of merge. Then we need to recalculate the new
time of merge for the clump behind clump X into clump x (which is now part of clump
y). We use the speed and positions of mascot y to calculate this then we add this new
time into the pq. We can find the time of merge between two mascots in isolation by
taking the amount that the mascot behind needs to catch up (difference in positions
minus the difference in indices) divided by the differences in speed. Also note we need to
store the trailing mascot in each clump for this to work.

Now that we have the forest, we can answer the queries. For query i, we want to find the
leader of the clump that mascot Ai is in at time Bi. This is equivalent to the highest
ancestor of Ai that merges before time Bi. We can use binary lifting to find this node,
and then a binary advancement up the tree to find this. Let mascot h be this highest
ancestor that merges before time Bi. The final answer will be the position of mascot h
(Ph +ShBi) minus the differences in indices (h−Ai) because they are in the same clump.

Time complexity: O((N + Q) logN)

Problem: Daniel Wu
Editorial: Daniel Wu
Flavortext: Daniel Wu
Code: C++, Java, Python

15

https://mbit.mbhs.edu/archive/2022s/solutions/MascotParade.cpp
https://mbit.mbhs.edu/archive/2022s/solutions/MascotParade.java
https://mbit.mbhs.edu/archive/2022s/solutions/MascotParade.py

	Ticket Prices
	Whac-a-Mole
	Ferris Wheel
	Behind The Scenes
	Shifting Seats
	Roller Coaster
	Toadstools
	Snapshot
	Park Passes
	Street Performers
	Rating Report
	Sugar Rush
	Not Nim
	Mascot Parade

