
Spring 2021 mBIT Standard Editorial

June 12, 2021

This editorial provides the intended solutions to each problem as well as accepted
programs in each supported language. In some cases, the given programs may employ
different algorithms than the one described in the editorial. For more complex problems,
multiple solutions may be given, in which case there will be programs for each solution.
Nevertheless, problems are likely to have solutions which are not covered here and we
would be interested to hear about any such solutions the reader may devise.

Contents

1 Mountain Climbing 2

2 Digit Sum 3

3 Reverse Race 4

4 Apple Orchard 5

5 Pokémon Permutation 6

6 Island Isolation 7

7 Map Matching 8

8 Street Layout 9

9 Grid Shuffling 10

10 Goomba Grouping 11

11 Rabbit Subtraction 12

12 Squid Art 13

A Among Us References 15

1

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§1 Mountain Climbing

Let one block length be one meter. The path’s length is the sum of its horizontal
movement, which is one meter for each column for a sum of N meters, and vertical
movement, which varies between columns. Vertical movement occurs when Steve moves
between different column heights; note that we must also account for climbing up the
first column and down the last column, which we can do by creating “filler” columns
a0 = 0 and aN+1 = 0 on the edges, as shown.

Then, the path’s total length is

N +
N∑
i=0

|ai+1 − ai|.

Time complexity: O(N)

Problem: Jeffrey Tong
Flavortext: Jeffrey Tong
Editorial: Jeffrey Tong
Code: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2021s/solutions/MountainClimbing.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/MountainClimbing.java
https://mbit.mbhs.edu/archive/2021s/solutions/MountainClimbing.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§2 Digit Sum

We’re trying to find a sequence of M digits that sums to N , such that the first digit
is not a 0. First, we check to make sure M is a positive number not larger than than
9N (if this is not the case, it is impossible because we must have at least one non-zero
digit and the maximum sum is 9N). Note that there is an edge case with M = 0 and
N = 1, because we allow 0 as a valid answer. We can then go through the digits from
left to right, and at each location we place the largest digit we can that doesn’t push the
running sum over M . For example, if M = 22 and N = 5, we would get 99400. This
process ensures that our leading digit is not 0.

Time complexity: O(N)

Problem: Jeffrey Tong
Flavortext: Gabriel Wu
Editorial: Gabriel Wu
Code: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2021s/solutions/DigitSum.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/DigitSum.java
https://mbit.mbhs.edu/archive/2021s/solutions/DigitSum.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§3 Reverse Race

There are many ways to go about implementing this procedure. Here is one way:

1. Break the input string into a list of words. This can be done by reading in the
entire input line and splitting along the spaces (for example with the .split()

method in Python), or by reading in the input one word at a time (for example
with std::cin in C++).

2. For each word, reverse it, and capitalize it if it was initially capitalized. Reversing
a string can be done naively with a for loop, or by using builtin methods like
std::reverse in C++. Capitalization can be checked using builtin methods as
well.

3. Reverse the entire list.

If you have questions on how to do this in your specific language, you can refer to our
solution code linked below.

Time complexity: O(N) where N is the number of characters in the input.

Problem: Gabriel Wu
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2021s/solutions/ReverseRace.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/ReverseRace.java
https://mbit.mbhs.edu/archive/2021s/solutions/ReverseRace.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§4 Apple Orchard

Many people used casework by comparing the ratios of X/Y and C/D, but a simpler
solution is to iterate over all possible trades in either direction. First, note that Carlos
only needs to trade in one direction because two trades in opposite directions will cancel
each other out. Further, one can prove that under the given bounds it is never optimal
for Carlos to use more than 1000 trades (doing so would give him an excess of a resource).
For any given number of trades (say, trading 3 ·C apples for 3 ·D bones), we can quickly
calculate the number of each resource he must collect to complete the trades and reach
N apples and M bones. In general, there are only O(N + M) possible numbers of trades
in either direction.

Time complexity: O(N + M)

Problem: Gabriel Wu
Flavortext: Gabriel Wu
Editorial: Gabriel Wu
Code: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2021s/solutions/AppleOrchard.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/AppleOrchard.java
https://mbit.mbhs.edu/archive/2021s/solutions/AppleOrchard.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§5 Pokémon Permutation

Note that we only care about the frequency of each character. This is because if we know
the frequency of each character in the Pokémon’s name, we can just have its name be
the repetition of characters in sorted order. For example, the following frequency table:

Character Frequency

a 3

b 5

e 2

becomes the name aaabbbbbee (after all, the problem never said the unknown name had
to be a legit Pokémon name).

Now let’s find the frequency of each character in the input string, and store it in a table
freq. If the name was repeated k ≥ 2 times, then we know the name contains freq[a]

k

copies of a, freq[b]
k copies of b, and so on, so k must evenly divide the frequency of each

character. Since k can’t be larger than the length of the input string, we could just check
all possible candidates of k. Alternatively, we could just take the GCD of the frequencies
of all characters. If the GCD is 1, then there is no way we can find a k ≥ 2 that evenly
divides the frequency of each character, so the answer is IMPOSSIBLE. Otherwise, we let
k equal the GCD. After finding k, we’ll print each character freq[character]

k times as our
answer.

Time complexity: O(N), where N is the length of the input.

Problem: Jeffrey Tong
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.java
https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§6 Island Isolation

This editorial will use common terminology pertaining to trees in graph theory. If you
are unfamiliar with trees, you can refer to online resources (1, 2, 3).

Poptropica can be described as a graph, where the islands are nodes and the connections
are edges. Since we’re guaranteed we can reach any island from any other (i.e. the graph
is connected) and we have N − 1 connections, we are in fact working with a tree.

Root the tree arbitrarily. We have to remove bridges in some order so that the following
condition remains satisfied:

After removing the bridge from u to v, the only outgoing bridge from v that
may remain is towards u.

Which bridges are we allowed to remove first? Let’s notice that if we remove bridges
pointing towards leaves, then each leaf will only have one bridge towards its parent, so
the condition is satisfied. So let’s start by removing those. After all of those bridges are
removed, notice that we have the same situation with the leaves’ parents! If we remove
the bridges from the leaves’ parents’ parents to the leaves’ parents, the leaves’ parents
will each only have one bridge point up towards their parents, since all other bridges
pointing down were previously removed. And now, we have the same situation with the
leaves’ parents’ parents! In general, this strategy allows us to remove all bridges pointing
downwards, in order from deepest (furthest from root) to shallowest (closest to root).

Great, we’re halfway there! After removing all downward bridges, we are left with only
upward bridges. But now we can apply the same logic, just in reverse: the root has no
outgoing bridges, so we can safely remove all bridges pointing up into the root. Once
that is done, we have the same situation with the root’s children. And in general, we can
remove all bridges pointing upwards, in order from shallowest to deepest.

All of this logic can be implemented via depth first search. You can refer to our solution
code for implementation details.

Time complexity: O(N)

Problem: Timothy Qian
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

7

https://www.youtube.com/watch?v=tVuEZakQxhQ
https://www.youtube.com/watch?v=1XC3p2zBK34
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://mbit.mbhs.edu/archive/2021s/solutions/IslandIsolation.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/IslandIsolation.java
https://mbit.mbhs.edu/archive/2021s/solutions/IslandIsolation.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§7 Map Matching

In short, this problem wants us to check if one polygon can be mapped onto another via
translation and dilation. First, let’s make sure the two polygons line up (p1 corresponds
to q1, p2 corresponds to q2, and so on). To do this, we can rotate both lists so that the
bottom leftmost point is first in both lists, which guarantees all the points will correspond
at the same indices.

Next, note that a polygon P can be dilated to become congruent to polygon Q if each side
of P is a constant factor longer than the corresponding side in Q, and if the corresponding
angles are congruent with identical orientation. Because working with angles risks
introducing floating point error, we can instead utilize vectors: if we describe a polygon
as a clockwise path of vectors, then P can be dilated to Q if the magnitude of each vector
of P is a constant factor larger than the corresponding vector magnitude in Q, and the
unit vectors point in the same direction.

Finally, when checking for the constant factor, we note that this factor may not be an
integer. If we break vectors into x and y components and check both separately, the
constant factor is always rational, so we can represent it using fractions to maintain
perfect precision.

Time complexity: O(N)

Problem: Maxwell Zhang
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2021s/solutions/MapMatching.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/MapMatching.java
https://mbit.mbhs.edu/archive/2021s/solutions/MapMatching.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§8 Street Layout

In this problem, we are looking for a way to place N houses on a number line, such that
the maximum distance from a house to a fire station is as small as possible. First, note
that if we have a maximum distance m, we can check if there exists an arrangement of
houses such that their maximum distance from a station is at most m. To do this, we
first sort the fire stations by position, and greedily place houses as soon as a position
is available. This can be done in O(N), as station i and i + 1 can hold a total of
min(2m, ai+1 − ai − 1) houses between them. After iterating through all of the adjacent
stations and accounting for the houses that can be placed on the left/rightmost edges,
we can check if we have any houses left to place. If so, then the solution must be greater
than m, and otherwise, the solution must be less than or equal to m.

Thus, the final step of the problem is to binary search on the answer (the value m) to
find the optimal distance. Overall, this solution runs in O(N logN).

Time complexity: O(N logN)

Problem: Jeffrey Tong
Flavortext: Gabriel Wu
Editorial: Aaron Mei
Code: C++, Java, Python

9

https://mbit.mbhs.edu/archive/2021s/solutions/StreetLayout.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/StreetLayout.java
https://mbit.mbhs.edu/archive/2021s/solutions/StreetLayout.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§9 Grid Shuffling

First, ignore the colors (so imagine that all squares are identical). After a few moves are
done, all of the squares will be bunched up into a corner. Once the squares are in a corner,
after 4 rotations, the squares will be in the same shape as before. There are
many ways to think about this, one of which is to imagine the shuffles as reflections of
the shape formed by the squares. Left/right shuffles reflect across the vertical line at the
center of the grid, and up/down shuffles reflect across the horizontal center. So every 4
moves, there are two vertical reflections (which cancel out) and two horizontal reflections
(which cancel out as well), leaving the same shape as before.

Now we bring the colors back into play. While the shape is the same after 4 moves, the
colors may necessarily not be. However, every square at each location will be mapped to
some other position in the new shape. Since the transformation is the same every time,
this mapping will be the same every four rotations, so the rotations essentially turn the
squares into a permutation of themselves, many times.

Permutations can be decomposed into cycles. For a permutation p1, . . . , pn, a cycle of
length k means that if you start at any location x on the cycle, and jump from x to px a
total of k times, you’ll end up back at x. So representing this cycle as a circular array, to
find the location of the square at x after m moves, we add m to the index of x in the
cycle and take it modulo k (this might be seen more clearly in the attached code).

The plan is to do “a few” moves at the beginning so that the squares are in a corner,
find the permutation, then decompose it into cycles and find the new locations after the
rest of the moves are done (remember to divide by 4, since the permutation represents
doing 4 moves). We may have a few moves left to do, which can be simulated manually
(as it’s at most 4).

Some implementation notes: 2 rotations is enough for “a few”. To implement the shuffles,
you can implement up, left, down, and right separately, or you can rotate the grid 90
degrees (counterclockwise) each time so you only have to implement downward gravity.
Cycle finding can be done manually, but for an implementation-speed tradeoff, you can
use binary lifting (ignore the LCA part) to make the implementation much simpler. The
official solution in C++ implements these ideas.

Time complexity: O(N2) or O(N2 logK), depending on implementation.

Problem: Gabriel Wu
Flavortext: Gabriel Wu
Editorial: Colin Galen
Code: C++, Java, Python

10

https://mathworld.wolfram.com/PermutationCycle.html
https://cp-algorithms.com/graph/lca_binary_lifting.html
https://mbit.mbhs.edu/archive/2021s/solutions/GridShuffling.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/GridShuffling.java
https://mbit.mbhs.edu/archive/2021s/solutions/GridShuffling.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§10 Goomba Grouping

First, let’s determine when the answer is -1. After trying some cases on paper, we will
find that Bowser’s algorithm is always optimal when N ≤ 4.

N = 1: The only possible partition is one Goomba on its own, for a difference equal to
its own weight.

N = 2: For two Goombas of positive weight A and B, it’s always optimal to place them
in separate groups, since |A−B| = max(A−B,B−A) < A+B, and Bowser’s algorithm
does just that.

N = 3: For three goombas of positive weights A ≤ B ≤ C, Bowser will place C in one
group and A and B in the other. This is always optimal. Placing three goombas in
one group gives the worst difference. Let’s say we isolate B instead (proof is same for
isolating A). Our difference becomes A + C − B. Compare that to isolating C for a
difference of max(A + B − C,C − A− B), and we note that A + C − B ≥ A + B − C
and A + C −B ≥ C −A−B, so isolating C is always more optimal.

N = 4: For four goombas of positive weights A ≤ B ≤ C ≤ D, Bowser will partition into
{A,D} and {B,C} if B + C > D, and {A,B,C} and {D} otherwise. You can do more
math to show that this is always optimal.

Now for N ≥ 5 and any value of K, we can always construct a counter case to Bowser’s
algorithm. First, let’s understand the flaw with Bowser’s reasoning. Bowser assumes
that it is always optimal to keep the two groups as even as possible at each intermediate
step, so his logic breaks when it is optimal to place two large weights in one group, and
many small weights that add up to the same amount in the other group. Knowing this,
let’s begin our construction with two large goombas each of weight 1018, which we want
to be in the same group in the optimal partition.

Since the optimal difference needs to be K, let’s make the weights in the other group
sum up to S = 2 · 1018 −K. If N is odd, then we can fill the other group with goombas

of weight
⌊

S
N−2

⌋
or

⌊
S

N−2

⌋
+ 1, such that they add up to S. Bowser’s algorithm will

place the two massive 1018 goombas into different groups, and because there are an
odd number of the smaller goombas, his final difference will be of order of magnitude

∼
⌊

S
N−2

⌋
. Since K ≤ 109 and N ≤ 20,

⌊
S

N−2

⌋
� K, so this is ok.

What about even N? This can be remedied by adding a goomba of weight 1, which will
hardly change the difference between the two groups from Bowser’s algorithm because 1
is so small in comparison. So the even N case reduces to the odd N case. In fact, this
observation also leads to an alternative solution, which is to simply pad the set with
N − 5 ones, and then hard-code a solution for the N = 5 case.

Time complexity: O(N)

Problem: Maxwell Zhang
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.java
https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§11 Rabbit Subtraction

For the moment, let’s assume that N is of the form 2m. Let’s define the function dp[i][j],
with 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m, to be the value of the first rabbit in the line if we
rotated so that index i is the start of the sequence, and j spells have been used. Note
that this value only depends on ai, ai+1, . . . , ai+2j−1.

We can initialize dp[i][0] to be a[i] and find dp[i][j] from the bottom-up as follows:

dp[i][j] = dp[i][j − 1]− dp[(i + 2j−1)%N][j − 1]

Our final answer would be max
0≤i<n

dp[i][m].

Now let’s solve the problem for N not a power of 2 using the same dp table. Let score(i, x)
be Willy’s final score if the original array only included rabbits ai, . . . , ai+x−1 (all indices
taken mod N).

To get score(i, x), where x isn’t a power of 2, there must be s := dlog2xe stages of merging.
At the second-to-last stage with only 2 rabbits remaining, the first 2s−1 elements would
all be merged into one group, with a score of score(i, 2s−1). The remaining N − 2s−1

elements must also have culminated into one group at this point. Therefore,

score(i, x) = score(i, 2s−1)− score(i + 2s−1, x− 2s−1)

= dp[i][s− 1]− score(i + 2s−1, x− 2s−1)

By induction, score(i, x) is an alternating sum of scores of chunks with sizes of decreasing
bits of x. For example, score(0, 7) = dp[0][2] − dp[5][1] + dp[7][0] and score(0, 5) =
dp[0][2]− dp[5][0]). Thus, we can compute any score(i, x) in logarithmic time, as long
as our dp values are precomputed. Our final answer is the maximum over all valid i of
score(i,N).

Time complexity: O(N logN)

Problem: Gabriel Wu
Flavortext: Gabriel Wu
Editorial: Claire Zhang
Code: C++, Java, Python

12

https://mbit.mbhs.edu/archive/2021s/solutions/RabbitSubtraction.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/RabbitSubtraction.java
https://mbit.mbhs.edu/archive/2021s/solutions/RabbitSubtraction.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§12 Squid Art

If we view each component of uniform color as a single vertex and draw an undirected
edge between each pair of adjacent components, we can produce an undirected graph G
equivalent to the original grid. By definition, G is bipartite. Notice that applying this
transformation to the sample produces a tree:

Theorem 12.1

G is a tree.

Proof. Assume for the sake of contradiction that G has a cycle C; since C must have an
even length, it has at least two red and two blue vertices. The loop L in the grid that
transforms to C thus has at least two red and two blue components. L cannot enclose
a central “hole”, as otherwise some cells (shown in purple) in the hole would neighbor
components of both colors; such cells must actually be part of a component in L, not in
the hole. Individual components can have holes, but these do not affect the proof.

We now analyze the center of L. WLOG, consider any two red components in L: they
cannot connect through the center, and they also cannot be cut off by a contiguous wall
of blue cells (or two blue components would connect through the center.) Thus, the only
way the center of L can close up is that some pairs of same-color components touch, but
only at single points:

13

(June 12, 2021) Spring 2021 mBIT Standard Editorial

In a hexagonal grid, however, no two cells touch at exactly one point, so the third
situation is actually impossible, a contradiction.

Thus, G is a connected acyclic graph.

Theorem 12.2

The minimum number of operations to turn the whole grid into a single color is the
radius of G.

Proof. Consider the equivalent of filling in a component in the original graph on G: we
switch the color of a vertex, which is equivalent to merging the vertex and its neighbors
into a single vertex of the new color.

Let r be the radius of G. This pattern makes it easier to see that filling in the component
corresponding to a centroid of G decrements r, and repeating the process r times reduces
G to a single vertex, so r operations are sufficient.

To show that r operations are necessary, consider a diameter D ⊆ G. One operation
can reduce at most 3 vertices (the chosen vertex and one neighbor to either side) of D
to a single vertex, decreasing the diameter by at most 2. Since it is well-known that
radius = ddiameter

2 e for a tree, the radius is therefore decreased by at most 1.

Computing the diameter and radius of a tree is a well-known problem solvable in linear
time. There is a bit of casework dealing with parity to be done at the end because the
problem requires all of the tiles to be blue (not just the same color).

Time complexity: O(NM)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Jeffrey Tong
Code: C++, Java, Python

14

https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.java
https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.py

(June 12, 2021) Spring 2021 mBIT Standard Editorial

§A Among Us References

Just for fun, we hid three references to the infamous game Among Us in our problem
sets. Each reference was in a problem shared by the Standard and Advanced divisions.

• In Pokémon Permutation, the first letter of each sentence in the first paragraph
spells AMONGUS.

• In Goomba Grouping, the sample output for the second test case contains eight
numbers. If you convert these numbers to letters (1=A, 2=B, . . . , 26=Z), it spells
IMPOSTOR.

• The second pretest in Squid Art depicts a character from the game:

19 30

111111111110000000000011111111

111111110000000000000000011111

111111110001111111000000001111

111111100011100000000000000111

111111100011000001111111000001

110000000111000001111111111001

100000000111000000000000000001

100011000111100000000000000001

100011000111110000000000000011

100011000111111111111111100011

100111000111111111111111100011

100111000111111111111111100011

100011000111111111111111100011

100001000111111111111111100011

110000000111110000000001000111

111111100111110001000011000111

111111100111110001000111000111

111111100000000001000000001111

111111100000000011111111111111

15

	Mountain Climbing
	Digit Sum
	Reverse Race
	Apple Orchard
	Pokémon Permutation
	Island Isolation
	Map Matching
	Street Layout
	Grid Shuffling
	Goomba Grouping
	Rabbit Subtraction
	Squid Art
	Among Us References

