
Spring 2021 mBIT Advanced Editorial

June 12, 2021

This editorial provides the intended solutions to each problem as well as accepted
programs in each supported language. In some cases, the given programs may employ
different algorithms than the one described in the editorial. For more complex problems,
multiple solutions may be given, in which case there will be programs for each solution.
Nevertheless, problems are likely to have solutions which are not covered here and we
would be interested to hear about any such solutions the reader may devise.

Contents

1 Pokémon Permutation 2

2 Azran Tablets 3

3 Goomba Grouping 4

4 Cytus Craze 5

5 Knockout Tournament 6

6 Squid Art 7

7 Scribble Roads 9

8 Future Gadget Lab 11

9 Immortality Potion 12

10 Luigi’s Mansion 13

11 Kirby’s Buffet 15

12 Pillar Path 16

A Among Us References 19

1

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§1 Pokémon Permutation

Note that we only care about the frequency of each character. This is because if we know
the frequency of each character in the Pokémon’s name, we can just have its name be
the repetition of characters in sorted order. For example, the following frequency table:

Character Frequency

a 3

b 5

e 2

becomes the name aaabbbbbee (after all, the problem never said the unknown name had
to be a legit Pokémon name).

Now let’s find the frequency of each character in the input string, and store it in a table
freq. If the name was repeated k ≥ 2 times, then we know the name contains freq[a]

k

copies of a, freq[b]
k copies of b, and so on, so k must evenly divide the frequency of each

character. Since k can’t be larger than the length of the input string, we could just check
all possible candidates of k. Alternatively, we could just take the GCD of the frequencies
of all characters. If the GCD is 1, then there is no way we can find a k ≥ 2 that evenly
divides the frequency of each character, so the answer is IMPOSSIBLE. Otherwise, we let
k equal the GCD. After finding k, we’ll print each character freq[character]

k times as our
answer.

Time complexity: O(N), where N is the length of the input.

Problem: Jeffrey Tong
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.java
https://mbit.mbhs.edu/archive/2021s/solutions/PokemonPermutation.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§2 Azran Tablets

Observe that each end of s must also be the end of some segment that we topple. Since
the ends of segments cannot lie within already-toppled segments, the segments must also
be disjoint. Combining these two facts, if we sort the segments we choose, each segment
sequentially covers a prefix of the remaining parts of s. This structure motivates a DP
solution.

Let dp[i] be the answer for the first i letters of s, which means dp[0] = 0. If the first i
letters end with a character c, the last segment chosen must have c at both ends. Thus,

dp[i] = min
j<i: sj+1=si

dp[j] + 1.

To compute these minimums efficiently, as we iterate from left to right, let

minPre[c] = min
j<i: sj+1=c

dp[j]

for all characters c. Then, minPre[c] can only change when si = c, and dp[i] =
minPre[si] + 1. Note that this algorithm would still work if the problem used an array
instead of a string.

Time complexity: O(N +M), where M is the size of the alphabet.

Problem: Jeffrey Tong
Flavortext: Timothy Qian
Editorial: Jeffrey Tong
Code: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2021s/solutions/AzranTablets.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/AzranTablets.java
https://mbit.mbhs.edu/archive/2021s/solutions/AzranTablets.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§3 Goomba Grouping

First, let’s determine when the answer is -1. After trying some cases on paper, we will
find that Bowser’s algorithm is always optimal when N ≤ 4.

N = 1: The only possible partition is one Goomba on its own, for a difference equal to
its own weight.

N = 2: For two Goombas of positive weight A and B, it’s always optimal to place them
in separate groups, since |A−B| = max(A−B,B−A) < A+B, and Bowser’s algorithm
does just that.

N = 3: For three goombas of positive weights A ≤ B ≤ C, Bowser will place C in one
group and A and B in the other. This is always optimal. Placing three goombas in
one group gives the worst difference. Let’s say we isolate B instead (proof is same for
isolating A). Our difference becomes A + C − B. Compare that to isolating C for a
difference of max(A+ B − C,C − A− B), and we note that A+ C − B ≥ A+ B − C
and A+ C −B ≥ C −A−B, so isolating C is always more optimal.

N = 4: For four goombas of positive weights A ≤ B ≤ C ≤ D, Bowser will partition into
{A,D} and {B,C} if B + C > D, and {A,B,C} and {D} otherwise. You can do more
math to show that this is always optimal.

Now for N ≥ 5 and any value of K, we can always construct a counter case to Bowser’s
algorithm. First, let’s understand the flaw with Bowser’s reasoning. Bowser assumes
that it is always optimal to keep the two groups as even as possible at each intermediate
step, so his logic breaks when it is optimal to place two large weights in one group, and
many small weights that add up to the same amount in the other group. Knowing this,
let’s begin our construction with two large goombas each of weight 1018, which we want
to be in the same group in the optimal partition.

Since the optimal difference needs to be K, let’s make the weights in the other group
sum up to S = 2 · 1018 −K. If N is odd, then we can fill the other group with goombas

of weight
⌊

S
N−2

⌋
or
⌊

S
N−2

⌋
+ 1, such that they add up to S. Bowser’s algorithm will

place the two massive 1018 goombas into different groups, and because there are an
odd number of the smaller goombas, his final difference will be of order of magnitude

∼
⌊

S
N−2

⌋
. Since K ≤ 109 and N ≤ 20,

⌊
S

N−2

⌋
� K, so this is ok.

What about even N? This can be remedied by adding a goomba of weight 1, which will
hardly change the difference between the two groups from Bowser’s algorithm because 1
is so small in comparison. So the even N case reduces to the odd N case. In fact, this
observation also leads to an alternative solution, which is to simply pad the set with
N − 5 ones, and then hard-code a solution for the N = 5 case.

Time complexity: O(N)

Problem: Maxwell Zhang
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.java
https://mbit.mbhs.edu/archive/2021s/solutions/GoombaGrouping.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§4 Cytus Craze

Consider V = 0⊕ · · · ⊕ (N − 1). Then consider ai = i⊕ (i− 1). This problem reduces to
computing the number of subsets S of {a1, . . . , aN} that satisfy(

V ⊕
⊕
x∈S

x

)
≤ K.

This is because including ai in the subset is equivalent to hitting the beat, while excluding
it is equivalent to missing the beat. It can be shown that ai = i⊕ (i− 1) = 2v2(i)+1 − 1,
where v2(i) denotes the number of 2’s that divide i (so v2(24) = v2(2

3 · 3) = 3 and
v2(18) = v2(2

1 · 9) = 1). This can be seen by considering the binary representation of i.

Let ci =
⌊
N
2i

⌋
−
⌊

N
2i+1

⌋
, the number of integers j in the range [1, N] such that v2(j) = i.

Let L be the largest number for which cL is nonzero. We claim that for any j in the
range of [0, 2L+1−1], there are exactly 2c0+···+cL−(L+1) subsets of {a1, . . . , aN} that XOR
to j. Further, if j is not in this range, there are no such subsets. This is because only
the parity of the number of occurrences of each 2i+1 − 1 matters in the final XOR. Since
the sum c1 + · · ·+ cL is simply N , each integer in the range [0, 2L+1 − 1] can be created
in exactly 2N−L−1 different ways.

Letting K ′ := min(K, 2L+1 − 1), our final answer is simply (K ′ + 1) · 2N−L−1. More
concisely, the answer can be written as (K ′+ 1) · 2N−bits(N), where bits(N) is the number
of digits in the binary representation of N , excluding leading zeroes. The answer mod
109 + 7 can be computed using binary exponentiation in O(logN) time.

Time complexity: O(logN)

Problem: Colin Galen
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2021s/solutions/CytusCraze.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/CytusCraze.java
https://mbit.mbhs.edu/archive/2021s/solutions/CytusCraze.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§5 Knockout Tournament

Consider a fixed tournament. WLOG, sort the strengths so that a1 ≤ a2 ≤ · · · ≤ a2N .
We also arbitrarily break ties so that if two people with equal strength level face off the
person with higher index wins. Then the unfairness is the sum of the differences between
the strength of the winner and the loser of each match. Let’s say the i-th person ends up
winning wi matches. Then their contribution to the unfairness is wi · ai − ai, except for
the overall winner of the tournament, who will have contribution wi · ai. But that person
is always the person with the highest strength level. Thus, the total unfairness is just

a2N +
2N∑
i=1

(wi − 1) · ai.

To compute this expected value, we can use linearity of expectation. Consider person
i, and say we want to compute the probability he wins at least j times. Then the
tournament must be set up so that he is the strongest out of all 2j competitors in his
j-bracket. The probability of this happening is(

i−1
2j−1

)(
2N−1
2j−1

) .
This is because there are i−1 people who are weaker than person i. We can calculate this
in O(1) if we precompute factorials and inverse factorials. Since we can easily compute
the probability that person i beats exactly j people, we can find the expected value of
wi in O(N). We iterate over all 2N people, so overall this takes O(N2N + 2N logMOD)
time.

Time complexity: O(N2N + 2N logMOD)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2021s/solutions/KnockoutTournament.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/KnockoutTournament.java
https://mbit.mbhs.edu/archive/2021s/solutions/KnockoutTournament.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§6 Squid Art

If we view each component of uniform color as a single vertex and draw an undirected
edge between each pair of adjacent components, we can produce an undirected graph G
equivalent to the original grid. By definition, G is bipartite. Notice that applying this
transformation to the sample produces a tree:

Theorem 6.1

G is a tree.

Proof. Assume for the sake of contradiction that G has a cycle C; since C must have an
even length, it has at least two red and two blue vertices. The loop L in the grid that
transforms to C thus has at least two red and two blue components. L cannot enclose
a central “hole”, as otherwise some cells (shown in purple) in the hole would neighbor
components of both colors; such cells must actually be part of a component in L, not in
the hole. Individual components can have holes, but these do not affect the proof.

We now analyze the center of L. WLOG, consider any two red components in L: they
cannot connect through the center, and they also cannot be cut off by a contiguous wall
of blue cells (or two blue components would connect through the center.) Thus, the only
way the center of L can close up is that some pairs of same-color components touch, but
only at single points:

7

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

In a hexagonal grid, however, no two cells touch at exactly one point, so the third
situation is actually impossible, a contradiction.

Thus, G is a connected acyclic graph.

Theorem 6.2

The minimum number of operations to turn the whole grid into a single color is the
radius of G.

Proof. Consider the equivalent of filling in a component in the original graph on G: we
switch the color of a vertex, which is equivalent to merging the vertex and its neighbors
into a single vertex of the new color.

Let r be the radius of G. This pattern makes it easier to see that filling in the component
corresponding to a centroid of G decrements r, and repeating the process r times reduces
G to a single vertex, so r operations are sufficient.

To show that r operations are necessary, consider a diameter D ⊆ G. One operation
can reduce at most 3 vertices (the chosen vertex and one neighbor to either side) of D
to a single vertex, decreasing the diameter by at most 2. Since it is well-known that
radius = ddiameter

2 e for a tree, the radius is therefore decreased by at most 1.

Computing the diameter and radius of a tree is a well-known problem solvable in linear
time. There is a bit of casework dealing with parity to be done at the end because the
problem requires all of the tiles to be blue (not just the same color).

Time complexity: O(NM)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Jeffrey Tong
Code: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.java
https://mbit.mbhs.edu/archive/2021s/solutions/SquidArt.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§7 Scribble Roads

In “Connect the Graph,” each player draws a new edge on their turn, and the first player
to connect the graph into one component wins. Let’s call edges that have not been drawn
in yet and connect two vertices in the same component useless, and edges that have not
been drawn but connect vertices of separate components useful. We claim that given
a game configuration, the only information necessary to determine who will win is the
current number of components with an odd number of vertices, the current number of
components with an even number of vertices, and the parity of the number of useless
edges.

We begin by reframing the game. Consider a scenario where we have components of sizes
c1, . . . , ck and e useless edges. The locations of these e useless edges is irrelevant, so we
can treat the game as if all k components are already complete (have no useless edges),
with the existence of a global counter currently set to e. On a player’s turn, they can
choose to either reduce the counter by one (this corresponds to drawing a useless edge)
or replace ci and cj with ci + cj and raise the counter by cicj − 1 (this corresponds to
drawing a useful edge between components i and j). This is because one new useless
edge is created for each pair of the form {vertex in i, vertex in j}, except the one which
is used to connect the components in the first place.

Now, imagine the transition graph T between game states S = {{ci}, e}. We have a node
for each possible S, and we draw a directed edge from S to S′ if a player’s move in S can
transition the game to S′. Now, define a new transition graph T ′ to be the original T ,
except for the purposes of transition edges it pretends that e in every state is always e
(mod 2). This results in many edges of T not appearing in T ′ (moving from an e = 4
state to an e = 3 state is now impossible), but every edge of T ′ appears in T . Note that
both T and T ′ must be acyclic, so every state S in either graph must have a well-defined
winner: either the “next player wins” or the “previous player wins”. We now claim that
if a player is the winner of state S in T ′, they are also the winner of state S in T . To win
from state S in T , the player may simply follow their original winning strategy on T ′.
Every one of their moves will be valid, and if their opponent makes a move that didn’t
appear in T ′, they can immediately undo it. For example, if their opponent goes from
e = 4 to e = 3, they can go directly to e = 2. Thus, we have shown that we only need
the parity of the number of useless edges to determine the winner.

This also lets us demonstrate that we do not need to keep track of the sequence c1, . . . ck
itself, only the number of odd components and the number of even components. Since we
only care about the parity of e, when increasing e by cicj − 1, we only need to know the
parities of ci and cj . Notice that we never need the exact values of c1, . . . , ck anywhere
else in this reframing of the game, so two components with the same parity can be treated
exactly the same. Thus, the entire state of the game can be encoded in the number of
odd components, the number of even components, and the parity of useless edges.

Now we can make a recurrence to solve the game. Let dp[i][j][e] (for 0 ≤ i, j ≤ N and
0 ≤ e ≤ 1) be True iff the next player to make a move will win, given that the game has
i odd components, j even components, and e is the parity of the number of useless edges.
Each dp state references up to three previous states (corresponding to merging odd-odd,
even-even, and even-odd components), in addition to dp[i][j][0] if e = 1. We set dp[i][j][e]
to be True iff at least one of these previous states is False (the next player can force
their opponent into a losing state). Note that if i or j is 0, some of these transitions may

9

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

be ignored. At the end, we calculate number of odd components, even components, and
useless edges in the original graph, then output the corresponding dp state. This gives us
an overall O(N2) solution.

To speed this up, it helps to visualize the N ×N × 2 grid of dp values. Notice that our
transitions only reference “nearby” dp states, and it does so in a very predictable way.
As such, we would expect a repeating pattern to form in the dp values for sufficiently
large values of i and j, provable by induction. If you print this grid, you can easily see
that such a pattern exists. It turns out that as long as one of i, j is larger than 5, all
that is needed to predict dp[i][j][0] and dp[i][j][1] is i (mod 4) (with some special cases
for j < 3). Thus, it is possible to hard-code this pattern into your solution to answer
queries in O(1), after computing the starting numbers of odd and even components and
useless edges (which can be done with DSU or DFS).

Time complexity: O(N +M)
Problem: Claire Zhang
Flavortext: Timothy Qian
Editorial: Gabriel Wu
Code: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2021s/solutions/ScribbleRoads.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/ScribbleRoads.java
https://mbit.mbhs.edu/archive/2021s/solutions/ScribbleRoads.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§8 Future Gadget Lab

Consider the set of leaves of the tree L. Consider g, which is the gcd of all elements
in the set {depth(x) + 1|x ∈ L}. Now let r ≡ JK (mod g). We now know that after
T = JK uses of the time machine, we must have that Hyounin is at depth equivalent to
r (mod g) in the tree no matter what.

Let pu denote the probability that Hyounin is at node u if we randomly choose some
number of usages t for the time machine such that t ∈ [1, T], and we take T to∞. pu will
eventually converge to a fixed value. For more details, we encourage the reader to look
into Markov chains. Let qr denote the probability that Hyounin is at a depth of r (mod g)
if we similarly choose a number of usages t for the time machine such that t ∈ [1, T]
and we take T to ∞. Note that no matter what, Hyounin always increments his depth
(mod g) in the tree by 1 every time he uses his time machine. So q0 = · · · = qg−1 = 1

g ,
because the residues (mod g) are uniformly distributed in [1, T], and as T approaches
∞, everything will converge accordingly.

We that for u 6= 1, we note that we have

pu =
ppar(u)

number of children(par(u))

So therefore, we may perform DFS to express pu for u 6= 1 in terms of kp1 for some
constant k. But then note that

∑
pi = 1. So therefore we can solve for p1, . . . , pN . Now

note that if we force ourselves to be at a depth that is r (mod g), then we simply look at
the timelines that are at a depth r (mod g), and we may multiply their probabilities by
g. This is due to the fact that q0 = · · · = qg−1. So we can simply now directly compute
the expected depth, where the overall time complexity comes from the DFS, which is
O(N).

Time complexity: O(N)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2021s/solutions/FutureGadgetLab.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/FutureGadgetLab.java
https://mbit.mbhs.edu/archive/2021s/solutions/FutureGadgetLab.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§9 Immortality Potion

First, we assume WLOG that A ≥ B ≥ C, and assume A + B + C = 2 for simplicity.
We will demonstrate that we can create a solution of volume 1 using only cups 1, 2 that
has a ratio of x : 1 − x of chemical r and chemical s (the remaining chemical is not
present) for any x ∈ [0, 1] with suitable precision in less than 140 moves. Say that we
currently have a solution of volume 1 and ratio y : 1− y in cup 2, and cup 1 is empty.
Then note that if we fill cup 1 with r completely and add it to cup 2, then we pour cup 2
into cup 1, and then empty cup 1, we now have a solution in cup 2 of volume one liter
with ratio y+1

2 : 1− y+1
2 . Similarly, if we repeat this process, but instead fill cup 1 with

s in the beginning, we have a one liter solution in cup 2 of volume one liter with ratio
y
2 : 1− y

2 . If we view y as a decimal in binary, this is equivalent to adding a 1 or 0 after
the decimal place in the binary representation of y. Therefore, if we compute the binary
representation of x to a certain precision, we can make a solution of x : 1− x in less than
140 moves with precision of 10−6. This bound of 140 is very loose.

Now, simply make a solution of ratio 1−B : B : 0 of volume 1 liter as shown above, and
add it to cup 3. Then make a solution of ratio 1− C : 0 : C of volume one liter, and add
it to cup 3. Now we have a solution of ratio 2−B − C : B : C, which is just A : B : C.
Note that this is possible because B,C ≤ 1. Assume for contradiction this is not true.
Then A could not be the largest of A,B,C if A = 2−B − C. Therefore, we can make
our desired solution in less than 300 moves.

Time complexity: O(log(precision)))

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

12

https://mbit.mbhs.edu/archive/2021s/solutions/ImmortalityPotion.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/ImmortalityPotion.java
https://mbit.mbhs.edu/archive/2021s/solutions/ImmortalityPotion.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§10 Luigi’s Mansion

Consider Luigi’s optimal path. It is easy to see that we can break the path into several
parts, where in each part he moves down to some point in a hallway, and then moves
back to the foyer. Let’s label the hallways 1, 2, 3, and label each of these parts in Luigi’s
path by their hallway number. Let the depth to which he traverses a hallway be the
maximum room in the hallway he visits before turning back. Clearly, no two adjacent
parts in Luigi’s path should be labeled the same number, otherwise Luigi should have
just continued down the hallway to obtain a better path. Furthermore, each time he
returns to the foyer, it is clear that he should next go down the hallway that he has
visited with the least depth. He must also make the depth to which he explores this
hallway no longer his lowest explored depth.

Let a1, . . . , ak be the depths of the hallways that Luigi visits in each part of his path, in
that order. Then the expected time that he arrives at King Boo can be broken in two
parts: the time he wastes by going down a hallway and back without encountering King
Boo and the time he takes to travel directly to King Boo. The latter part is constant
regardless of a1, . . . , ak (it is

∑N
i=1 3 · i · pi by linearity of expectation).

The former part is more difficult to account for. Call this remaining time wasted time.
Let’s say he’s visited hallways 1, 2, 3 with depths a, b, c respectively, with WLOG a ≤ b ≤ c.
Then we can assume he visits the lowest depth hallway, and say he explores to a depth
d. Then this exploration will take 2d time, and this time will only account for the total
exploration time if King Boo is not in the first d rooms along the first branch, the first b
rooms along the second branch, and the first c rooms along the third branch. So this
contributes exploration will contribute 2d(1− (Pd + Pb + Pc)) in expectation, where we
define Px = p1 + · · ·+ px.

We will now use dynamic programming. Define dp[i][j] as the expected minimum wasted
time if the two highest depth hallways that Luigi has explored are i, j with i ≤ j. Note
that we can actually ignore the lowest branch’s exploration depth; this will be more clear
when we write out the dp. There are two ways we could get to a state dp[i][j]. We could
either come from dp[k][j] (k ≤ j), and then Luigi explores the lowest branch to a depth i,
or we come from dp[k][i] (k ≤ i), and Luigi explores the lowest branch to a depth j. So
we have

dp[i][j] = min

[
min
1≤k≤i

dp[k][j] + 2i · (1− (Pi + Pj + Pk)),

min
1≤k≤i

dp[k][i] + 2j · (1− (Pi + Pj + Pk))

] (1)

If we compute dp[i][j] in increasing order of j and then increasing order of i, this leads
to an O(N3) solution. We note that this can be solved using Convex Hull Trick, which
leads to an O(N2 logN) solution. Furthermore, the slopes that we insert into the Convex
Hull Trick are monotonic, as well as our query points. So we can use a deque to perform
Convex Hull Trick, which makes our solution O(N2) overall.

An interesting thing to note is that we have observed by computation that the depths to
which Luigi explores to are nondecreasing. This would only make the second argument
of the min function necessary in the dp, but we have not formally shown that this is true.
We would welcome any proofs or ideas that anyone has.

13

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

Time complexity: O(N2)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

14

https://mbit.mbhs.edu/archive/2021s/solutions/LuigisMansion.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/LuigisMansion.java
https://mbit.mbhs.edu/archive/2021s/solutions/LuigisMansion.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§11 Kirby’s Buffet

Consider some fixed [L,R] along with an X. Clearly, if an element ai for i ∈ [L,R] is
a supermask of X, meaning that ai&X = X, it does not hurt to include ai in our final
subset. On the other hand, if ai is not a supermask of X, we cannot include it in our
subset. Thus, we reduce the problem to asking if the bitwise AND of all elements in
[L,R] that are supermasks of X is exactly equal to X.

Now say we break the array ai into C blocks of roughly equal size. For each block, we
iterate over all possible values of X, and we want to compute the bitwise AND of all
elements in the block that are supermasks of X. To do this, we use bitmask dynamic
programming. Let A = 217 − 1. Consider an array dp indexed by 0, . . . , A, where dp[i] is
set to a null value by default (it is convenient to use 218 − 1). For all elements x in the
current block, set dp[x] = x. Now we iterate masks downwards from A to 0. Say we are
at a mask of x. Then for every set bit b in x, we do dp[x− 2b] = dp[x− 2b] & dp[x]. One
can show that by the end of this process, dp[x] will contain the value of the bitwise AND
of all elements that are supermasks of x in the current block. This works in O(A logA)
for each block.

We can solve the full problem with Q queries in O
(
Q
(
C + N

C

))
using square root

decomposition. For each query, simply find the bitwise AND of dp[X] for all blocks fully
contained in [L,R] (there are O(NC) of these), then individually iterate over the ai in the
interval which have not yet been accounted for (there are O(C) of these). Therefore, this
solution works overall in O

(
N
C · (C +A logA) +Q

(
C + N

C

))
. Noting that Q ≈ N ≈ A,

we can refer to all three of these variables as N . This function is minimized if we choose
C =

√
N

logN , obtaining the final complexity of O(N
√
N logN). This solution also has a

very low constant factor, so it works very fast in practice.

Time complexity: O(N
√
N logN)

Problem: Colin Galen
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

15

https://mbit.mbhs.edu/archive/2021s/solutions/KirbysBuffet.cpp
https://mbit.mbhs.edu/archive/2021s/solutions/KirbysBuffet.java
https://mbit.mbhs.edu/archive/2021s/solutions/KirbysBuffet.py

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§12 Pillar Path

First, we try to solve the problem if all costs to remove circles are infinite. Let S denote
the start and E denote the end. A nice simplification we can do is treat the start and
the end like circles of radius 0.

Theorem 12.1

The shortest path from S to E consists only of tangent line segments between two
circles and paths along a circle’s circumference.

Proof. Appeal to physics: Imagine if the shortest path was a string from S to E. Now
pull the string taut. Clearly pulling it taut decreases the length of the path, and it will
get pulled taut until all parts of the string are tangent lines between two circles or paths
along a circle’s circumference.

Consider creating all O(N2) tangents between all pairs of circles. We leave it as an
exercise to the reader to figure out how to compute these tangents (it takes some
geometry). Let the endpoints of this collection of tangents be vertices on a graph, and
draw an edge for each tangents. We can then construct edges connecting adjacent vertices
around the circumference each circle. In this manner, we may run Dijkstra’s algorithm
in O(N2 logN).

The issue with this solution is that we must check if each tangent intersects another
circle. If it does, we may not use it in our path. To do this, consider a central circle C.
We examine at all tangents to C from the other circles, and want to determine which of
these tangents do not intersect any other circle. Consider another circle Γ. We can split
the tangents of Γ into two types, clockwise tangents and counterclockwise tangents. If we
treat the tangents as rods and imagine pulling on them, clockwise tangents are those
that would cause the circle to rotate clockwise, and counterclockwise tangents are those
that would cause it to rotate counterclockwise. We limit ourselves to only looking at
clockwise tangents for now. We may handle counterclockwise tangents similarly later.

The following diagram shows the two clockwise tangents from central circle C to circle Γ.

Now we view a clockwise tangent PQ with P on C and Q on another circle D 6= Γ by
~Q− ~P , and we map this tangent to a point represented by (θ, d), where θ and d are the
argument and magnitude of ~Q− ~P . Say PQ intersects circle Γ. As in the figure above,
let P1Q1 be mapped to (θ1, d1) and P2Q2 be mapped to (θ2, d2). First, note that θ must

16

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

lie in the range [θ2, θ1] if PQ is to intersect Γ. Furthermore, we claim that (θ, d) must lie
directly above some point on the line segment between (θ2, d2) and (θ1, d1) if we view
these as normal points in the Cartesian plane (replacing the x-axis with the θ-axis and
the y-axis with the d-axis)1. To justify this, we note that if we move a point from Q2 to
Q1 on the inner arc of Γ, the length of the tangent to C is a concave up function with
respect to θ. Similarly, if we move a point from Q2 to Q1 on the outer arc of Γ, the length
of the tangent to C is a concave down function. This can be formally shown by power of
a point. Thus, we must have the point representation of PQ in θd-space lie above the
curve U modeled by (α, len(α)) for α in [θ2, θ1], where len(α) is the length of segment
tangent to C with argument α and endpoints on C and the outer arc of Γ. Since U is
concave down, it lies above the straight line between its endpoints. In summary, we have
shown that (θ, d) must lie above some point on the segment between (θ2, d2) and (θ1, d1).

Consider the other clockwise tangent from C to D, and let it be called XY . Now let the
line segment between the point representations of PQ and XY be called segment a, and
the line segment between (θ1, d1) and (θ2, d2) be called b. All of this is being done in the
θd Cartesian plane. a and b can’t intersect because all circles are nonintersecting. If an
endpoint of a is directly above a point on b, then no endpoint of b can be directly above
an endpoint of a. Thus, we may draw an “arrow” from a to b signifying a is “above” b.
If we do this for all segments formed by the point representations of the tangents for
each circle, we obtain a directed acyclic graph. There are clearly no cycles because the
line segments must be straight2. Therefore, we can perform a topological sort on these
segments to find an ordering of circles in which the tangent segment from C to A can
only intersect B if A is before B in the ordering.

Now how can we find this topological ordering? We can construct the necessary arrows
using an algorithm like Bentley Ottman, or the one used in Cow Steeplechase II from
the USACO Silver 2019 US Open. This will work in O(N logN), and the topological
sort will work in O(N).

Now we add the circles in reverse topological order. At the same time, we maintain a
segment tree (or Fenwick tree) indexed on the angles. Each time we add a circle with
segment endpoints (θ1, d1), (θ2, d2), we update the interval represented by [θ2, θ1] (making
sure to take the shorter arc interval). We check if each endpoint intersects any other
interval, and if so, we know that tangent intersects a previous circle. This works in
O(N logN) after performing array flattening on the angles.

Now back to the original problem. How do we take care of non-infinite costs? Instead
of making tangents unusable if they intersect a circle, we simply add the costs of the
circles intersected by the tangents to the “distance” of the tangent. The previous
solution is easily amended to solve the new problem by performing range add updates to
intervals in the segment tree. Since we perform two angle sweeps (one clockwise and one
counterclockwise) for each circle, the overall algorithm runs in O(N2 logN).

Side Note: This problem was meant to be extremely difficult both to solve and implement.
The coding can be made slightly easier by a well-built library and templates, but the

1To visualize this mapping from tangents to points, it is helpful to note that the blue area in the
diagram corresponds to some area directly underneath the line segment between (θ1, d1) and (θ2, d2)
in θd-space (although it is more strictly bounded by the concave up function below the segment).

2The only exception to this is a cycle formed by segments that span all 2π radians, and this can be
dealt with by splitting all segments that cross an arbitrary “branch cut” in two.

17

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

ideas in this problem are not easy. It also may be possible to squeeze asymptotically
slower O(N3) solutions under the time limit due to the heavy constant factor involved in
our solution, but we tried our best to prevent that. Also note that our model solution
has small bug which we have not located, likely due to precision issues (we identified
and fixed an incorrect test case during the contest, so nobody lost points because of our
mistake).

Time complexity: O(N2 logN).

Problem: Gabriel Wu and Timothy Qian
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++

18

https://mbit.mbhs.edu/archive/2021s/solutions/PillarPath.cpp

(June 12, 2021) Spring 2021 mBIT Advanced Editorial

§A Among Us References

Just for fun, we hid three references to the infamous game Among Us in our problem
sets. Each reference was in a problem shared by the Standard and Advanced divisions.

• In Pokémon Permutation, the first letter of each sentence in the first paragraph
spells AMONGUS.

• In Goomba Grouping, the sample output for the second test case contains eight
numbers. If you convert these numbers to letters (1=A, 2=B, . . . , 26=Z), it spells
IMPOSTOR.

• The second pretest in Squid Art depicts a character from the game:

19 30

111111111110000000000011111111

111111110000000000000000011111

111111110001111111000000001111

111111100011100000000000000111

111111100011000001111111000001

110000000111000001111111111001

100000000111000000000000000001

100011000111100000000000000001

100011000111110000000000000011

100011000111111111111111100011

100111000111111111111111100011

100111000111111111111111100011

100011000111111111111111100011

100001000111111111111111100011

110000000111110000000001000111

111111100111110001000011000111

111111100111110001000111000111

111111100000000001000000001111

111111100000000011111111111111

19

	Pokémon Permutation
	Azran Tablets
	Goomba Grouping
	Cytus Craze
	Knockout Tournament
	Squid Art
	Scribble Roads
	Future Gadget Lab
	Immortality Potion
	Luigi's Mansion
	Kirby's Buffet
	Pillar Path
	Among Us References

