
mBIT Standard Editorial

June 2020

These are the solutions to the standard problems. Each answer consists of a brief
explanation of the solution followed by a link to our code in each language. Keep in
mind that there are multiple ways to do each problem, and the given code may employ a
different algorithm than the explanation.

Contents

1 Ice Cream Truck 2

2 Pirating Parrots 3

3 Monkey Signs 4

4 Happy Bunnies 5

5 Musical Bowings 6

6 Snake Moves 7

7 Egg Interception 8

8 Icebergs 9

9 Bracelets 10

10 Zoo Tour 11

11 Raging Rhinos 12

12 Hen Hackers 13

1

(June 2020) mBIT Standard Editorial

§1 Ice Cream Truck

It is useful to buy cones in bundles if and only if the unit price of cones in bundles in
lower than in individual units (i.e. B < 5A). In that case, buy as many cones in bundles
as possible. Then, the remaining cones (or all the cones, if no bundles are used) should
be bought at the A price.

Time Complexity: O(1)

Problem: Maxwell Zhang
Editorial: Claire Zhang
Solutions: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2020/solutions/IceCreamTruck.cpp
https://mbit.mbhs.edu/archive/2020/solutions/IceCreamTruck.java
https://mbit.mbhs.edu/archive/2020/solutions/IceCreamTruck.py

(June 2020) mBIT Standard Editorial

§2 Pirating Parrots

Loop through each character in the string and track the x- and y- coordinates of the robot
after each move. Let the robot’s position after the moves be (xN , yN). To reach (X,Y)
with the minimum number of commands, clearly at least |X − xN | moves are needed to
get the robot to the right x-coordinate and at least |Y − yN | moves are needed for the
y-coordinate. This minimum can always be achieved, so a total of |X − xN |+ |Y − yN |
commands are needed.

Time Complexity: O(N)

Problem: Aaron Mei
Editorial: Claire Zhang
Solutions: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2020/solutions/PiratingParrots.cpp
https://mbit.mbhs.edu/archive/2020/solutions/PiratingParrots.java
https://mbit.mbhs.edu/archive/2020/solutions/PiratingParrots.py

(June 2020) mBIT Standard Editorial

§3 Monkey Signs

Loop through each character of the string, keeping count of the number of each letter
(watch out for capitalization and spaces); we will call the counts cnt. While doing so,
keep track of the letter (other than M) with the highest count; call this maxCnt. The
maximum number of M’s will be achieved by changing the most frequent letter other
than M to M’s, so the answer is cnt[′M ′] + maxCnt.

Time Complexity: O(N)

Problem: Gabriel Wu
Editorial: Claire Zhang
Solutions: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2020/solutions/MonkeySigns.cpp
https://mbit.mbhs.edu/archive/2020/solutions/MonkeySigns.java
https://mbit.mbhs.edu/archive/2020/solutions/MonkeySigns.py

(June 2020) mBIT Standard Editorial

§4 Happy Bunnies

Loop from i = A to i = B. At each iteration, keep a variable curSum representing the
amount the current i contributes to the overall sum. Initially, curSum = i. To add the
digits, keeping adding the last digit of the current number to curSum and removing that
digit until the number is 0. If any of these digits are 7, skip this iteration completely.
Otherwise, add curSum to the overall sum, and output the overall sum.

Time Complexity: O((B −A) logB)

Problem: Maxwell Zhang
Editorial: Claire Zhang
Solutions: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2020/solutions/HappyBunnies.cpp
https://mbit.mbhs.edu/archive/2020/solutions/HappyBunnies.java
https://mbit.mbhs.edu/archive/2020/solutions/HappyBunnies.py

(June 2020) mBIT Standard Editorial

§5 Musical Bowings

Find the index of the first letter other than B; call this index i and the letter at that
index L. If all the letters are B, define i as the last index and we may arbitrarily set L to
D. Starting from i and moving forwards, keep alternating between setting the current
letter to L and the opposite of L. If an already-marked bowing is encountered at any
point, the current bowing must be set to that letter.* Run this algorithm from i in the
backwards direction as well and the problem is complete.

* Proof of correctness: Note that if it is possible to mark all the bowings without any
hooked bowings, this solution will find that marking. If not, the marking for the first
new letter will not affect the number of hooked bowings present (ex. it is equally valid
to mark U B B B D as both U D U D D and U U D U D), so this solution will still find
one of the optimal markings.

Time Complexity: O(N)

Problem: Maxwell Zhang
Editorial: Jeffrey Tong
Solutions: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2020/solutions/MusicalBowings.cpp
https://mbit.mbhs.edu/archive/2020/solutions/MusicalBowings.java
https://mbit.mbhs.edu/archive/2020/solutions/MusicalBowings.py

(June 2020) mBIT Standard Editorial

§6 Snake Moves

As the snake moves, store its current position xcurr, ycurr. For every tile (xi, yi) it must
move to, it can reach that tile in 1 move if any of these conditions are satisfied: x = xcurr
(move horizontally), y = ycurr (move vertically), or |x − xcurr| = |y − ycurr| (move
diagonally). Otherwise, two moves are needed (this can always be done by first moving
to the right x-coordinate and then to the right y-coordinate.) Update xcurr, ycurr, and
the total number of moves.

Time Complexity: O(N)

Problem: Jeffrey Tong
Editorial: Claire Zhang
Solutions: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2020/solutions/SnakeMoves.cpp
https://mbit.mbhs.edu/archive/2020/solutions/SnakeMoves.java
https://mbit.mbhs.edu/archive/2020/solutions/SnakeMoves.py

(June 2020) mBIT Standard Editorial

§7 Egg Interception

Since Farmer Fred is required to catch all the eggs, he catches eggs in the order of the
time they start falling. Sort the times and loop through the indices of the sorted times;
at each iteration, add the distance needed to travel to the next egg to the final sum.

Time Complexity: O(N logN)

Problem: Ayush Varshney
Editorial: Claire Zhang
Solutions: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2020/solutions/EggInterception.cpp
https://mbit.mbhs.edu/archive/2020/solutions/EggInterception.java
https://mbit.mbhs.edu/archive/2020/solutions/EggInterception.py

(June 2020) mBIT Standard Editorial

§8 Icebergs

We can keep track of which penguins are still standing with a boolean array (call it
isStanding), and loop through each penguin. In each iteration, if the current penguin
is still alive, loop through each penguin again and eliminate the first penguin with the
lowest distance. Update the isStanding array as you go. Once the end is reached, loop
back to the beginning. Once only one penguin is standing, output its index.*

* Proof of time complexity: Note that this brute-force solution always works because
since at least one penguin is eliminated in each cycle through all the penguins, there will
be at most N cycles, giving a time complexity of O(N2) for looping through the turns.
We will only execute an inner loop to find the nearest penguin if the current penguin is
still standing, which will happen exactly N − 1 times, again giving a time complexity of
O(N2). The total time complexity is thus O(N2).

Time Complexity: O(N2)

Problem: Gabriel Wu
Editorial: Jeffrey Tong
Solutions: C++, Java, Python

9

https://mbit.mbhs.edu/archive/2020/solutions/Icebergs.cpp
https://mbit.mbhs.edu/archive/2020/solutions/Icebergs.java
https://mbit.mbhs.edu/archive/2020/solutions/Icebergs.py

(June 2020) mBIT Standard Editorial

§9 Bracelets

Because rotating the first bracelet by N beads will return it to its original orientation,
we only need to consider offsets of k beads where 0 ≤ k ≤ N − 1.

For convenience, subtract 1 from each number so that the numbers are from 0 to N − 1.
For each number, we now compute the offset by which the first bracelet should be rotated
so that the number is in the same position in both bracelets. To do this, construct arrays
a and b so that for each 0 ≤ i ≤ N − 1, a[i] and b[i] are the indices of i in the first and
second bracelets, respectively. Since we want 0 ≤ k ≤ N − 1, the offset for each i is then
(b[i]− a[i] + N)%N (the nonnegative value of b[i]− a[i] mod N).

The maximum number of matching beads is then the frequency of the most common
offset between the two bracelets.

Time Complexity: O(N)

Problem: Gabriel Wu
Editorial: Jeffrey Tong
Solutions: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2020/solutions/Bracelets.cpp
https://mbit.mbhs.edu/archive/2020/solutions/Bracelets.java
https://mbit.mbhs.edu/archive/2020/solutions/Bracelets.py

(June 2020) mBIT Standard Editorial

§10 Zoo Tour

The key idea to this problem is that there are two ways to go around the circular
neighborhood to get from one habitat to another. Thus, we can use prefix sums to solve
this problem. We will index the habitats from 0 to N − 1. Before taking the queries,
preprocess the data by constructing a prefix array pre such that for 0 ≤ i < N , pre[i] is
the distance from habitat 0 to habitat i traveling clockwise and pre[N] is the length of
the entire loop, using all the paths.

For each query, arrange u and v such that u < v. Then, if the veterinarian travels clockwise,
the distance traveled (call this d) is pre[v] − pre[u]. If he travels counterclockwise, he
will travel through every path except the ones in the clockwise route, so the distance will
be pre[N]− d. The answer to that query is the minimum of those two distances.

Time Complexity: O(N + Q)

Problem: Aaron Mei
Editorial: Aaron Mei
Solutions: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.cpp
https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.java
https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.py

(June 2020) mBIT Standard Editorial

§11 Raging Rhinos

We see that each interaction between rhinos uses exactly two rhinos. We may choose to
look at each interaction from the perspective of either rhino, however it turns out that it
is advantageous to only observe these interactions through either the right or left initial
rhino for all interactions. For the sake of explanation, we shall look at the right initial
rhino. This crucial observation reveals that we are able to simulate these interactions
using a stack approach iterating over the given list from left to right.

In this stack, we apply casework before inserting the current rhino. If the rhino on the
top of this stack faces right and our current rhino faces left, we have an interaction.
While our current rhino can defeat the rhino at the top of the stack, we decrease our
rhino’s stamina and remove the rhino at the top of the stack. Once the current rhino
is unable to defeat more rhinos (the stack is empty/the rhino at the top of the stack is
facing left or the rhino at the top of the stack has more stamina than the current rhino)
we either insert or do not insert the current rhino with its remaining stamina into the
stack. After iterating over the whole list using this process, we can simply output the
resultant stack.

Time Complexity: O(N)

Problem: Maxwell Zhang
Editorial: Ayush Varshney
Solutions: C++, Java, Python

12

https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.cpp
https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.java
https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.py

(June 2020) mBIT Standard Editorial

§12 Hen Hackers

Since we are given the information that all characters that appear in the string only
appear once, we may simply query each of the 62 possible characters one at a time to
determine the characters the password consists of.

All we need now is the order of these characters within the password. Though this may
seem strange at first, we can simply apply a sort operation on the list of known characters
within the string. This requires a custom comparator: a function that determines whether
one character should go in front of or behind another. In this case, the comparator
would be a function that sends queries of two characters to the grader. Depending on
the output from the grader, the comparator returns the respective value for the sorting
algorithm. For example, if you want to know whether ‘a’ comes before or after ‘b’ in
the password, you simply query ‘ab’. After all the characters are sorted, we query the
correctly ordered string of characters and end the program.

Additionally, it is important to remember that the password size could be 1 or 2 characters
long, so any time we are sorting with the comparator and receive a response of ‘C’ instead
of ‘Y’ or ‘N’, we must immediately end the program.

Query Complexity: O(N logN), where N is the password length.

Problem: Gabriel Wu
Editorial: Ayush Varshney
Solutions: C++, Java, Python

13

https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.cpp
https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.java
https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.py

	Ice Cream Truck
	Pirating Parrots
	Monkey Signs
	Happy Bunnies
	Musical Bowings
	Snake Moves
	Egg Interception
	Icebergs
	Bracelets
	Zoo Tour
	Raging Rhinos
	Hen Hackers

