
mBIT Advanced Editorial

June 2020

These are the solutions to the advanced problems. Each answer consists of a brief
explanation of the solution followed by a link to our code in each language. Keep in
mind that there are multiple ways to do each problem, and the given code may employ a
different algorithm than the explanation.

Contents

1 Zoo Tour 2

2 Leaping Lizards 3

3 Raging Rhinos 4

4 Raccoon Mischief 5

5 Turtle Tribulation 6

6 Gorilla Grouping 7

7 Hen Hackers 8

8 Platypus Puddles 9

9 Playlist Shuffle 10

10 Penguin Mayhem 11

11 Sharing Seals 12

12 Zookeepers’ Gathering 14

1

(June 2020) mBIT Advanced Editorial

§1 Zoo Tour

The key idea to this problem is that there are two ways to go around the circular
neighborhood to get from one habitat to another. Thus, we can use prefix sums to solve
this problem. We will index the habitats from 0 to N − 1. Before taking the queries,
preprocess the data by constructing a prefix array pre such that for 0 ≤ i < N , pre[i] is
the distance from habitat 0 to habitat i traveling clockwise and pre[N] is the length of
the entire loop, using all the paths.

For each query, arrange u and v such that u < v. Then, if the veterinarian travels clockwise,
the distance traveled (call this d) is pre[v] − pre[u]. If he travels counterclockwise, he
will travel through every path except the ones in the clockwise route, so the distance will
be pre[N]− d. The answer to that query is the minimum of those two distances.

Time Complexity: O(N + Q)

Problem: Aaron Mei
Editorial: Aaron Mei
Solutions: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.cpp
https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.java
https://mbit.mbhs.edu/archive/2020/solutions/ZooTour.py

(June 2020) mBIT Advanced Editorial

§2 Leaping Lizards

The intended solution of this problem is to reduce it to a graph. We can loop through
each pole and determine which poles it may form an edge with. The input size suggests
this may not be done naively, so we must maintain the greatest slope we have seen and
make sure to only create an edge when the current slope is greater than or equal to the
greatest slope we have seen. After we have this graph, we can run a BFS while keeping
track of distances to determine the minimal distance to the final pole.

Time Complexity: O(N2)

Note: Using convex hull, the complexity can be further reduced to O(N logN). The
trick here is that the minimum distance can be found by computing the convex hull with
the tips of the poles. We can use proof by contradiction to show that the convex hull is
indeed the shortest path. Assume that there is a shorter distance than the convex shape.
However, in order to achieve this, you must go through an illegal pole (we can see this is
true by looking at the slopes of the convex hull). Thus, we can add points below the
first and last poles and run convex hull to find the number of poles the lizard need pass
through. Then, we subtract out those two points and account for the points with the
same slope to get the minimum distance. The diagram below provides intuition on why
the convex hull is optimal.

Problem: Ayush Varshney
Editorial: Aaron Mei
Solutions: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2020/solutions/LeapingLizards.cpp
https://mbit.mbhs.edu/archive/2020/solutions/LeapingLizards.java
https://mbit.mbhs.edu/archive/2020/solutions/LeapingLizards.py

(June 2020) mBIT Advanced Editorial

§3 Raging Rhinos

We see that each interaction between rhinos uses exactly two rhinos. We may choose to
look at each interaction from the perspective of either rhino, however it turns out that it
is advantageous to only observe these interactions through either the right or left initial
rhino for all interactions. For the sake of explanation, we shall look at the right initial
rhino. This crucial observation reveals that we are able to simulate these interactions
using a stack approach iterating over the given list from left to right.

In this stack, we apply casework before inserting the current rhino. If the rhino on the
top of this stack faces right and our current rhino faces left, we have an interaction.
While our current rhino can defeat the rhino at the top of the stack, we decrease our
rhino’s stamina and remove the rhino at the top of the stack. Once the current rhino
is unable to defeat more rhinos (the stack is empty/the rhino at the top of the stack is
facing left or the rhino at the top of the stack has more stamina than the current rhino)
we either insert or do not insert the current rhino with its remaining stamina into the
stack. After iterating over the whole list using this process, we can simply output the
resultant stack.

Time Complexity: O(N)

Problem: Maxwell Zhang
Editorial: Ayush Varshney
Solutions: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.cpp
https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.java
https://mbit.mbhs.edu/archive/2020/solutions/RagingRhinos.py

(June 2020) mBIT Advanced Editorial

§4 Raccoon Mischief

Let’s examine what happens to an individual raccoon. Say that an individual raccoon
is visited by Alice Y times with the values x1, x2, ..., xY , and assume that the raccoon
begins with some non-zero amount of candy. On the first visit, Alice will take away the
raccoon’s candy. On the second visit, Alice will give it x2 candy. On the third visit,
Alice will take away the raccoon’s candy again, and on the fourth visit she will give it
x4 candy. This pattern continues, and we can see that if the raccoon is visited an odd
number of times, it will have no candy at the end, and if it is visited an even number
of times, it will have xY candy at the end. The case where the raccoon begins with no
candy is the same, except the parities are swapped. If the raccoon is never visited, their
candy amount doesn’t change.

Hooray, we’ve solved the problem for an individual raccoon! Now how do we generalize
this to the entire array? We can use a sweep line approach. We store two dynamic arrays
(std::vector in C++, java.util.ArrayList in Java, lists in Python) at each of the
N positions named add and remove. addi represents all queries beginning at position i,
and removei represents all queries ending at position i. For a given ith query, we insert
a marker representing that query into addli and removeri . Each query is stored in two
arrays, so O(Q) memory is used overall.

Now we sweep from position 1 to N . Each time we encounter the start of a given query
(the query is in add), we add it to a set with elements ordered by index of the queries
(std::set in C++, java.util.TreeSet in Java, heapq in conjunction with boolean
array for Python). Each time we encounter the end of a given query (the query is in
remove), we remove it from the set. Conceptually, at position i the set holds all queries
that affect position i, which are all queries that start before i and end after i. For each
position, we look at the parity of the size of the set, and we change the array value to
either the query value in the set with the highest index, 0, or leave it the same per the
casework done in the first paragraph.

Time Complexity: O(N + Q logQ) - Each query is inserted and removed from the set
once, and ordered set operations take logarithmic time.

Problem: Colin Galen
Editorial: Maxwell Zhang
Solutions: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2020/solutions/RaccoonMischief.cpp
https://mbit.mbhs.edu/archive/2020/solutions/RaccoonMischief.java
https://mbit.mbhs.edu/archive/2020/solutions/RaccoonMischief.py

(June 2020) mBIT Advanced Editorial

§5 Turtle Tribulation

Note that we are given a list of coordinates on a plane. We know that every y value has
at most one corresponding x value, but every x value does not necessarily have a single
corresponding y value. This means that if we make a list of size Z for every y value
(which is an N by Z grid), we are able to store all the possible positions for all points. At
each position in this grid, we can store the minimum number of shifts necessary to arrive
at that point from the given bottom-most point. The idea of having all path possibilities
with a fixed starting position in a grid and picking one optimally with the least cost lends
itself to dynamic programming.

However, applying a dynamic programming approach here is not enough. In the transition
between states, we must add the least cost (the least number of shifts necessary to get
to any point in the previous row, which satisfies the slope condition with respect to the
current point, from the bottom-most point) to the cost of our current point. Without
any optimizations, we would have a slow O(NZ2) solution since we would need to check
the slope condition for every single point in the previous row (of which there are Z) for
every single current point (of which there are approximately NZ).

We must realize that the absolute slope between two points, given a fixed change in y and
a variable change in x, decreases as the change in x increases. So, forcing the absolute
slope to be greater than or equal to K means that all points in the previous row of points,
which satisfy the slope condition, have to lie in a range. Through some algebra we can
determine the endpoints of this range and then determine the minimum cost within that
range. One method to determine the minimum cost within that range is by creating a
segment tree from all the costs of points in the previous row. This would allow us to
apply a range minimum query on the range of viable previous points for the current
point and obtain the minimum cost. After filling out our dynamic programming table,
the final answer is simply the cost corresponding to the point at the top-most position
since that point must remain fixed.

Time Complexity: O(NZ logZ)

Note: It was also possible to obtain an O(NZ) solution by applying a sliding minimum
window using a deque instead of a range minimum query using a segment tree since
the range of viable points in the previous row would shift by at most one point after
incrementing the current point in the dynamic programming. You can read about it here.

Problem: Ayush Varshney
Editorial: Ayush Varshney
Solutions: C++, Java, Python

6

https://www.nayuki.io/page/sliding-window-minimum-maximum-algorithm
https://mbit.mbhs.edu/archive/2020/solutions/TurtleTribulation.cpp
https://mbit.mbhs.edu/archive/2020/solutions/TurtleTribulation.java
https://mbit.mbhs.edu/archive/2020/solutions/TurtleTribulation.py

(June 2020) mBIT Advanced Editorial

§6 Gorilla Grouping

If you think of each gorilla as a node of a graph, and you connect each pair of incompatible
gorrillas with an edge, then the graph becomes a series of disjoint chains. This is because
every node is connected to a maximum of two other nodes and there cannot be any cycles.
The problem has now been reduced to counting the number of independent sets (subsets
of disjoint nodes) in the graph. We can find the lengths of the chains by storing the IDs
in a set or a map, then adding K to each ID over and over again until we get an invalid
ID.

Since the chains of nodes in the graph are disjoint, we can count the number of independent
sets in each one separately, then multiply the totals together. In a chain of length c,
there are fibc independent sets, where fibi represents the ith Fibonacci number. This
can be shown with induction: if the bottom node in the chain is included in the set then
there are fibc−2 ways, otherwise there are fibc−1 ways.

By precomputing the first N Fibonacci numbers mod 109 + 7, we can find the solution
in O(N) time. Remember to subtract 1 from the final product because the problem asks
for non-empty subsets.

Time Complexity: O(N)

Problem: Gabriel Wu
Editorial: Gabriel Wu
Solutions: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2020/solutions/GorillaGrouping.cpp
https://mbit.mbhs.edu/archive/2020/solutions/GorillaGrouping.java
https://mbit.mbhs.edu/archive/2020/solutions/GorillaGrouping.py

(June 2020) mBIT Advanced Editorial

§7 Hen Hackers

Since we are given the information that all characters that appear in the string only
appear once, we may simply query each of the 62 possible characters one at a time to
determine the characters the password consists of.

All we need now is the order of these characters within the password. Though this may
seem strange at first, we can simply apply a sort operation on the list of known characters
within the string. This requires a custom comparator: a function that determines whether
one character should go in front of or behind another. In this case, the comparator
would be a function that sends queries of two characters to the grader. Depending on
the output from the grader, the comparator returns the respective value for the sorting
algorithm. For example, if you want to know whether ‘a’ comes before or after ‘b’ in
the password, you simply query ‘ab’. After all the characters are sorted, we query the
correctly ordered string of characters and end the program.

Additionally, it is important to remember that the password size could be 1 or 2 characters
long, so any time we are sorting with the comparator and receive a response of ‘C’ instead
of ‘Y’ or ‘N’, we must immediately end the program.

Query Complexity: O(N logN), where N is the password length.

Problem: Gabriel Wu
Editorial: Ayush Varshney
Solutions: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.cpp
https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.java
https://mbit.mbhs.edu/archive/2020/solutions/HenHackers.py

(June 2020) mBIT Advanced Editorial

§8 Platypus Puddles

Let the water level be the amount of water on a cell, plus the height of the ground in the
cell. Let the weight of a contiguous path of cells in the habitat (connected by shared
edges, not shared corners) be the maximum ground height of any cell on the path. The
key idea here is the following: if there is a contiguous path of cells with weight h going
from cell c to the edge of the habitat, then the water level at cell c can be no more than
h. If this condition is violated, it means there is a way for water from cell c to flow out
of the habitat, which is impossible after an equilibrium is reached. Now, let Hc be the
minimum value of h for all paths connecting cell c to the edge. The water level at cell
c must be exactly Hc (so if Hc is equal to the height of the ground at c, then c has no
water).

Now, let Hc represent the minimum weight of any path from the edge of the habitat to
cell c. It turns out that Hc is exactly the water level at cell c because it is guaranteed
that enough rain fell to fully saturate all puddles. Our task is now to find Hc for each cell
c. In other words, we want to find the lowest weight path from the edge of the habitat
to each cell. Think: what algorithm could help us with that? Since the our definition
of weight is non-decreasing (meaning that a path can never lose weight by adding more
nodes), we simply apply Dijkstra’s algorithm. Think of the exterior of the habitat as
a starting node that is connected to all cells on the border of the habitat. Then, use a
priority queue and successively visit cells with the next lowest Hc values. Once you have
all Hc values, add them up and subtract the sum of the ground heights.

Time complexity: O(N2 logN)

Note: We couldn’t get our Python solution to run in much less than 10 seconds, which is
why we recommended using a different language.

Problem: Gabriel Wu
Editorial: Gabriel Wu
Solutions: C++, Java, Python

9

https://mbit.mbhs.edu/archive/2020/solutions/PlatypusPuddles.cpp
https://mbit.mbhs.edu/archive/2020/solutions/PlatypusPuddles.java
https://mbit.mbhs.edu/archive/2020/solutions/PlatypusPuddles.py

(June 2020) mBIT Advanced Editorial

§9 Playlist Shuffle

First note that at any location, there is an optimal move that you should take regardless
of any of your previous moves. Now we characterize these types of optimal moves. Note
that there is a radius R such that if you are at most R songs away from B, you should
just press next or previous until you arrive at B. Otherwise, you hit randomize. Our goal
is to compute this R in sublinear time. Let f(R) be the expected amount of time you
would take with to get to B with a radius of R. Note that if R is very large, then f(R)
is also large. This makes sense since you’re not using the random function smartly. Note
that if R is very small, then f(R) is also large, since you’re using the random function
way too often, and thus the expected value goes up. Thus, if we graph f(R) on a plane,
it looks like a “U”. The formal proof of this is left as an exercise to the reader. But now
we can ternary search the optimal value of R.

It suffices to be able to compute f(R) for a given R. For all locations L such that L is
within R of B (|L−B| ≤ R), we have that the expected amount of additional time to
get to B if you’re at L is simply |L − B| ·X; you just go straight to B. For all other
L, you click randomize immediately. Thus for all other L, we have that the expected
amount of additional time to get to B is a constant, which we will call E. Let the sum
of |L − B| ·X for all L satisfying |L − B| ≤ R be S, and the number of such L be M .
Then we have that E = N−M

N ·E + M
N · S + Y . This is because you gain an additional Y

seconds, and then you do casework onto which type of song you randomize onto. Thus,
you can solve for E. It’s thus easy to find the average value of all the expected values for
each location L from 1, . . . , N , which is simply f(R). This can be done in O(1) time.

Time Complexity: O(logN) due to the ternary search.1

Problem: Timothy Qian
Editorial: Timothy Qian
Solutions: C++, Java, Python

1It is probably possible to solve this in O(1), but it’s just more math. And this is a programming
competition!

10

https://mbit.mbhs.edu/archive/2020/solutions/PlaylistShuffle.cpp
https://mbit.mbhs.edu/archive/2020/solutions/PlaylistShuffle.java
https://mbit.mbhs.edu/archive/2020/solutions/PlaylistShuffle.py

(June 2020) mBIT Advanced Editorial

§10 Penguin Mayhem

Since we can treat penguins as passing straight through each other, we can just compute
the number of collisions between all pairs of penguins at time less than or equal to T .
We want to compute that pretty quickly, since we need to do this N2 times.

Consider two penguins whose coordinates are determined by (x1 + p1t, y1 + q1t), (x2 +
p2t, y2 + q2t) at time t. We determine when their x-coordinates are the same first; their
y-coordinates can be done analogously. This is precisely when we have x1 + p1t =
x2 + p2t + kW , where k is an integer. The extra kW accounts for the wrap around
effect. Thus we have that t = x2−x2

p1−p2
+ W

p1−p2
· k for some integer k. The case of p1 = p2

is addressed by noticing this just means they have the same x-speed; thus they either
always have the same x-coordinate or never do. We can easily take care of this case
separately, so assume p1 6= p2. Note that we can simplify this to t = a + bk for some
integer k and rational numbers a, b. And similarly, when their y-coordinates are the same,
we must have t = c + dl for an integer l and rational numbers c, d. (We similarly assume
here q1 6= q2, as this can be taken care of separately). Thus we have a + bk = c + dl,
or bk − dl = (c − a). Taking advantage of the fact that a, b, c, d are rational numbers,
we clear denominators to make this equation of the from gk + hl = i, for integers g, h, i.
Note we can assume gcd(g, h, i) = 1 by dividing through by the gcd. Taking (mod g),
we get l = i/h (mod g), and taking (mod h), we get k = i/g (mod h), where division is
modular inverse (g, h could share factors making division impossible, but if that happens,
then i must share this factor with g, h for there to be a solution, which contradicts
us saying the three are have a gcd of 1). This is solvable via the Chinese Remainder
Theorem. We get an equivalence of the form k ≡ u (mod v) for some integers u, v.

And thus we can characterize all t where the penguins intersect. It’s easy to compute
the number of integers k such that k ≡ u (mod v) and 0 ≤ a + bk ≤ T in O(1). We
leave that as an exercise for the reader. So we can count everything by doing some
math. The complexity comes from clearing denominators, doing the Chinese Remainder
Theorem, and maybe applying LCM/GCD (if you’re using fractions to store the rational
numbers). This comes out to O(log(max(W,H))). One must be careful when doing all
these operations because handling these numbers wrong will overflow even long long
sometimes.

Time Complexity: O(N2 log(max(W,H))).

Problem: Timothy Qian, Ayush Varshney
Editorial: Timothy Qian
Solutions: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2020/solutions/PenguinMayhem.cpp
https://mbit.mbhs.edu/archive/2020/solutions/PenguinMayhem.java
https://mbit.mbhs.edu/archive/2020/solutions/PenguinMayhem.py

(June 2020) mBIT Advanced Editorial

§11 Sharing Seals

Think of the array being represented as a matrix. We will consider the case of N = 4 as
an example. The inital array would be represented by

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·

A1

A2

A3

A4


If we multiply this out, we just get the right matrix. To do one change for K = 1, we left
multiply by the matrix 

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


And if we do this change twice, we would simply multiply by the square of this matrix,
which is 

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2


Each the jth weight from the top of the ith column is like how much each Aj contributes
to Ai. At this point, you could try to do matrix exponentiation with matrix multiplication
at get an O(N3 log T + N2Q) solution. We made the time limit one second to try to
discourage these solutions, but it is possible that some of these got through.

However, note that this columns are just shifts of each other. This should be intuitive,
as our update is circularly symmetric. Thus, we can precompute the 1st column of this
matrix for an update for K = 1 for any T by just applying the transition over and over
to an array with only one 1 and the rest 0’s. This would take O(NT) times, because it
takes O(N) time to transition for each of the T arrays we want to keep track of.

But note that there are only Q of these arrays that we care about, because there are
only at most Q different update numbers. So we can store this in O(NQ) space. Thus,
for all updates with K = 1, we can just compute this matrix, and update the values by
multiplying the matrix with the current array. This would take O(N2) time for each
query, for an overall O(N2Q + NT) solution if all K = 1.

For K 6= 1, we can reduce this down to a case where K = 1. Note that If we take the
elements Ai, Ai−K , Ai−2K , . . . , where the indices are (mod N), we form cycles. we can
treat this cycle as equivalently the K = 1 case. However, the length of these cycles might
not be N , they will be d, where d|N . One approach is to just compute the tables for

all divisors of N , which would take O(N2Q + N
4
3T) time and O(N

4
3T) space (the extra

N
1
3 comes from the number of divisors of N). We tried (and maybe unsuccessfully) to

make these solutions exceed the time limit.

12

(June 2020) mBIT Advanced Editorial

The other solution is to notice that if d|N , we can simply take our precomputed weights
for N , and collapse it to an array for d by adding it over. For if our precompute weights
for N = 4 where [2, 1, 0, 1], to get the weights for N = 2, we can split the arrays into
[2, 1], [0, 1], and add them to each other to get [2, 2]. I’ll leave if to the reader to figure
out why that works. Thus, we actually don’t need any extra computation. The solution
will still take O(N2Q + NT) time. This runs very quickly in around 200 ms for all test
cases.

A fun fact is that the weights for K = 1 are simply the rows of Pascal’s triangle. You
could also try roots of unity filter once you know that, but that seems really messy.

Time Complexities: O(N2Q + NT), O(N2Q + N
4
3T), O(N2Q + N3 log T)

Problem: Timothy Qian
Editorial: Timothy Qian
Solutions: C++, Java, Python

13

https://mbit.mbhs.edu/archive/2020/solutions/SealSharing.cpp
https://mbit.mbhs.edu/archive/2020/solutions/SealSharing.java
https://mbit.mbhs.edu/archive/2020/solutions/SealSharing.py

(June 2020) mBIT Advanced Editorial

§12 Zookeepers’ Gathering

Let’s make two observations.

1. The timeline can be represented as an array of N + 1 integers. Adding an event is
akin to adding 1 to all elements in array positions L to R, and removing an event
is subtracting 1 from L to R. The longest contiguous block of available time is just
the longest subarray of 0s.

2. The peculiar stipulation of specifying four different people, each with non-overlapping
events, means the array values can only ever range from 0 to 4 inclusive.

Adding and subtracting from a subarray can easily be done with a segment tree, but
how do we find the longest subarray of 0s? Instead of thinking of an update as adding or
subtracting, let’s think of it as shifting. If we maintain the longest subarray of 0s, 1s, 2s,
3s, and 4s for a given interval, then adding 1 to the entire interval means the new answer
for longest subarray of 4s is now the old answer for the longest subarray of 3s, the new
answer for longest subarray of 3s is now the old answer for the longest subarray of 2s,
and so on. Subtracting is the same idea, except it’s a downward shift.

The only question left is how to compute a non-leaf node in the segment tree based on
its children. In addition to the longest subarrays for each of the five values, we’ll also
maintain the longest contiguous prefix and suffix for each of the five values as well as
the size of the interval in each of the nodes. Say we are computing node C based on its
children A and B.

For i = 0, 1, 2, 3, 4:

C.prefix[i] =

{
A.prefix[i] A.prefix[i] < A.size

A.prefix[i] + B.prefix[i] A.prefix[i] = A.size

C.suffix[i] =

{
B.suffix[i] B.suffix[i] < B.size

B.suffix[i] + A.suffix[i] B.suffix[i] = B.size

C.answer[i] = max(A.answer[i], B.answer[i], A.suffix[i] + B.prefix[i])

So the complete solution is to use a segment tree with lazy propagation that maintains
an array of size 5 of prefix, suffix, and answer at each of the nodes. Merge nodes using
the merge function described above.

Time Complexity: O(Q logN)

Bonus: Can you solve the problem under the same bounds of Q and N if there was no
limit on the number of people? 2

Problem: Maxwell Zhang
Editorial: Maxwell Zhang
Solutions: C++, Java, Python

2Hint: square root. We didn’t put this on the contest because it would be hard to distinguish between
this solution and just an O(N2) bash.

14

https://mbit.mbhs.edu/archive/2020/solutions/ZookeepersGathering.cpp
https://mbit.mbhs.edu/archive/2020/solutions/ZookeepersGathering.java
https://mbit.mbhs.edu/archive/2020/solutions/ZookeepersGathering.py

	Zoo Tour
	Leaping Lizards
	Raging Rhinos
	Raccoon Mischief
	Turtle Tribulation
	Gorilla Grouping
	Hen Hackers
	Platypus Puddles
	Playlist Shuffle
	Penguin Mayhem
	Sharing Seals
	Zookeepers' Gathering

