
mBIT Varsity Solutions

November 2019

These are the solutions to the varsity problems. Each answer consists of a brief
explanation of the solution followed by a link to our code in each language. Keep in
mind that there are multiple ways to do each problem, and the given code may employ a
different algorithm than the explanation.

Contents

1 Baking Pan 2

2 Frosting Patterns 3

3 Mountain Mileage 4

4 Milky Way 5

5 Coffee Swapping 6

6 Hot Cake 7

7 Cupcake Distribution 8

8 Secret Base 9

9 Contradictory Canelé 10

10 Cake Cutting 11

11 Lost Child 12

12 Outbreak 13

1

(November 2019) mBIT Varsity Solutions

§1 Baking Pan

Let’s find the answer for a single circle. For any set of points, the bounding rectangle
of minimal area has its top at the highest y-coordinate of the points, its bottom at
the lowest y-coordinate, its left at the lowest x-coordinate, and its right at the highest
x-coordinate.

This means that for any circle, the bounding x-coordinates are cx− r and cx + r, and the
bounding y-coordinates are cy−r and cy +r, where (cx, cy) is its center and r is its radius.
We can therefore only focus on those points for each circle and ignore everything else.
Our bounding rectangle is determined by the minimum/maximum x and y coordinates
of the points for all of the circles, and the area can be easily calculated.

Each circle contributes 4 (O(1)) points of interest, so our total complexity is O(N).

Problem: Ayush Varshney
Editorial: Colin Galen
Solutions: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2019/solutions/BakingPan.cpp
https://mbit.mbhs.edu/archive/2019/solutions/BakingPan.java
https://mbit.mbhs.edu/archive/2019/solutions/BakingPan.py

(November 2019) mBIT Varsity Solutions

§2 Frosting Patterns

What would the string look like if it was periodic (repeating) with period K? The
characters 1 . . .K would be equal to K + 1 . . . 2K, which would be equal to 2K + 1 . . . 3K,
and so on. This equality must hold for every block of K characters that starts at the end
of the last block, up until the last block in the string. If N is not divisible by K, then
only the first characters of the last block up to N must be equal to the first characters
of every other block, otherwise the whole block must be equal to every other block. If
we can find any K that satisfies this, then we can construct our answer. Checking

⌈
N
K

⌉
blocks of size K will take up to N operations, and we have up to N/2 (because the string
must repeat at least twice) values of K to check. This process of checking is O(N2).

Once we find a K, we can construct a string of length N +M with that period and print
the substring N + 1 . . . N + M . Just keep appending the period string until the answer
string’s length is greater than or equal to N + M . Our final complexity is dominated by
finding the length of the period, so it is O(N2) in total.

Problem: Gabriel Wu
Editorial: Colin Galen
Solutions: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2019/solutions/FrostingPatterns.cpp
https://mbit.mbhs.edu/archive/2019/solutions/FrostingPatterns.java
https://mbit.mbhs.edu/archive/2019/solutions/FrostingPatterns.py

(November 2019) mBIT Varsity Solutions

§3 Mountain Mileage

We can just check each house and find the total gas used to reach each house. This can
be done in just O(N) after sorting the array of houses in O(N logN). We loop through
the array and maintain the left and right sums. The left sum begins at zero, and we add
each house’s height to the left sum after processing it. Similarly, the right sum begins at
the total sum, and we subtract each house’s height from the right sum after processing it.
When processing any given house Hi, the total gas used is

A · ((Hi −H1) + (Hi −H2) + · · ·+ (Hi −Hi−1))

+B · ((Hi+1 −Hi) + (Hi+2 −Hi) + · · ·+ (Hn −Hi))

= A · ((i− 1)Hi − (H1 + H2 + · · ·+ Hi−1))

+B · ((Hi+1 + Hi+2 + · · ·+ Hn)− (n− i)Hi)

= A · ((i− 1)Hi + leftSumi) + B · (rightSumi − (n− i)Hi)

The answer is just the minimum of this value for all Hi.

Time Complexity: O(N logN)

Note: It turns out the optimal house is always located at a weighted median (assuming
0-based indexing, the optimal index of the sorted array is bn · b/(a + b)c). See if you can
prove this fact!

Problem: Gabriel Wu
Editorial: Maxwell Zhang
Solutions: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2019/solutions/MountainMileage.cpp
https://mbit.mbhs.edu/archive/2019/solutions/MountainMileage.java
https://mbit.mbhs.edu/archive/2019/solutions/MountainMileage.py

(November 2019) mBIT Varsity Solutions

§4 Milky Way

Run a BFS, keeping track of the planet we’re at. We also need to keep track of how
much fuel we have, so our state will not just be the planet we’re at, but rather (current
planet, current fuel). Because of the nature of BFS, whenever we’re at a state we’ve
already visited, we’ll have taken more steps to get here than the first time we visited
this state, so we shouldn’t continue on this path. This means we only actually visit each
state 1 time.

For each state, we can use the edges adjacent to the planet we’re at to transition to new
states. To consider refueling at a planet, we can add another edge from each planet to
itself with negative weight (so traversing it gives us fuel). If refueling gives us more than
C fuel, we just set our fuel to C. If we have less than 0 fuel after taking an edge, we
cannot continue on that path. Start at the state (planet = A, fuel = 0). The first time
we reach B will be the minimum answer (also because of the nature of BFS).

For each fuel level c (0 ≤ c ≤ C), there will be N states (one for each vertex), and N +M
transitions to other states. Thus, we perform O(C(N + M)) operations in total.

Problem: Gabriel Wu
Editorial: Colin Galen
Solutions: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2019/solutions/MilkyWay.cpp
https://mbit.mbhs.edu/archive/2019/solutions/MilkyWay.java
https://mbit.mbhs.edu/archive/2019/solutions/MilkyWay.py

(November 2019) mBIT Varsity Solutions

§5 Coffee Swapping

First, let’s characterize what a maximal beauty configuration is, and then we’ll figure
out the minimum number of swaps. Determining the maximal beauty configuration is
equivalent to finding the maximum possible number by pairing up coffees, summing the
temperatures in each pair, and third taking the product of these pair values. Say we have
four coffees with temperatures a < b < c < d. The possible pairings we can have yield
beauty products of (a + b)(c + d), (a + c)(b + d), (a + d)(b + c). Subtracting the third
from the second and factoring, we get (a− b)(d− c). Note this is 0 if and only if a = b
and c = d, which is impossible for distinct temperatures. This is always nonpositive,
therefore the third is larger than the second. Subtracting the third from the first, we get
(a − c)(b − d), which is always nonnegative. Note that this is equal to 0 if and only if
we have a = c or b = d, meaning a = b = c or b = c = d, again impossible for distinct
temperatures. Thus the third configuration is the largest.

So say that we have coffees a, b, c, d such that currently two are paired and the other two
are paired, we want to pair the largest with the smallest. So now we will prove the largest
and the smallest temperature coffees must be paired together. Say for contradiction they
are not. Let the smallest have temperature a and largest have temperature d. Say a is
paired with b and d is paired with c. We have that a ≤ b, c ≤ d. But then we can make
the temperature higher by pairing a with d by what we proved before. Thus we proved
we have to pair the smallest and largest coffees. Similarly, the next smallest and next
largest temperature coffees must be paired, and so on.

Now we must figure out the minimum number of swaps to achieve this maximal beauty.
We already know which coffees have to be paired. Thus we can label the coffees that have
to be paired together with the same numbers. Thus we can view this as a permutation.
Now we can view this permutation in terms of cycles. To resolve each of the cycles, it
requires the length of the cycle minus one swaps. Thus we can do cycle decomposition in
O(N), and thus the overall time complexity to solve this is O(N).

Problem: Ayush Varshney
Editorial: Timothy Qian
Solutions: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2019/solutions/CoffeeSwapping.cpp
https://mbit.mbhs.edu/archive/2019/solutions/CoffeeSwapping.java
https://mbit.mbhs.edu/archive/2019/solutions/CoffeeSwapping.py

(November 2019) mBIT Varsity Solutions

§6 Hot Cake

First consider the directed graph formed by drawing arrows from a person to the person
he/she will pass to. We can decompose this into cycles. This will take O(N) time. If we
compute the length of the cycle, we can easily figure out where the hot cake will be in
O(1) time, as the location will just follow the same loop of people over and over. Thus
the overall time complexity is O(N) from the cycle decomposition.

Problem: Gabriel Wu
Editorial: Timothy Qian
Solutions: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2019/solutions/HotCake.cpp
https://mbit.mbhs.edu/archive/2019/solutions/HotCake.java
https://mbit.mbhs.edu/archive/2019/solutions/HotCake.py

(November 2019) mBIT Varsity Solutions

§7 Cupcake Distribution

Say that a chef wants to serve people with sweetness preferences of Sl, . . . , Sr. We will
find the optimal value that minimizes their unhappiness. Thus we want to find the x that
minimizes (Sl−x)2 + · · ·+(Sr−x)2 = S2

l + · · ·+S2
r +(r− l+1)x2 +2x(Sl + · · ·+Sr). But

this is a quadratic function that can be minimized by completing the square. Thus we
find the optimal value is to choose x = Sl+···+Sr

r−l+1 , which intuitively makes sense because
this is the average of their preferences. Note that we can compute the lowest unhappiness
if a chef were to serve the people with sweetness preferences of Sl, . . . , Sr in O(1) with
O(N) preprocessing. We do this by maintaining prefix sums of the sum of the squares of
the sweetness preferences and a prefix sums of just the sweetness preferences.

We will now solve this problem using DP. Let the DP state dp[i] be the lowest total
unhappiness of serving the first i people. We have that dp[i] = min1≤a≤i−k(dp[a] +
cost(a + 1, i)), where this comes from simply iterating the interval the ith chef will serve.
This can be computed in O(N2) as we have shown the cost can be computed in O(1).

Problem: Timothy Qian
Editorial: Timothy Qian
Solutions: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2019/solutions/CupcakeDistribution.cpp
https://mbit.mbhs.edu/archive/2019/solutions/CupcakeDistribution.java
https://mbit.mbhs.edu/archive/2019/solutions/CupcakeDistribution.py

(November 2019) mBIT Varsity Solutions

§8 Secret Base

Consider a vertex that has at least K outgoing tunnels. If it has less than K, it cannot
possibly get us an answer. Otherwise, we need to find K that are in the same component.
How do we usually check for components? We can run a BFS from each possible source
and mark components, making sure to not go through our chosen vertex. Then, for each
component, we can take the K smallest tunnels from each one (provided there are at
least K) and update our answer. This is O(NM+M logM

K), which is too slow for small K.

Because this graph is a tree, we can speed up the component-finding process. Let’s set
up binary lifting for our tree (where we store the 2j-th parent of each vertex for j in
[0, blog2Nc]), because this allows us to find the least common ancestor (LCA) of any two
vertices. For any tunnel that goes from our chosen vertex i to another vertex j, if the
LCA of i and j is i, then j is a child of i. The component that j is in can be uniquely
identified by the direct child of i in the subtree of j, which we can use the binary lifting
to find in O(logN). If the LCA of i and j is anything else, then j is not a child of i, and
is in a component with every other node that isn’t a child of i.

We can use any map or list to store the costs of the tunnels in each component efficiently.
For each component, if it has at least K tunnels that lead to it, then we will take the
sum of the K tunnels of least cost, and update our minimum answer. If we run this
for each vertex with at least K outgoing tunnels, we will have our answer. Finding the
LCA and initializing/using binary lifting is O(logN) for each edge, and taking the K
tunnels of least cost for components must be O(M logM), so our final complexity is
O(N + M(logN + logM))

Problem: Timothy Qian
Editorial: Colin Galen
Solutions: C++, Java Python

9

https://mbit.mbhs.edu/archive/2019/solutions/SecretBase.cpp
https://mbit.mbhs.edu/archive/2019/solutions/SecretBase.java
https://mbit.mbhs.edu/archive/2019/solutions/SecretBase.py

(November 2019) mBIT Varsity Solutions

§9 Contradictory Canelé

First, we show which A,B for a given N,M yield no possible configurations of canelé. If
A|N,B|M , note that we can divide the N ×M grid into A×B rectangles, and since the
sum within each of these rectangles is nonnegative, the overall sum is nonnegative. Thus
in this case, there are no solutions.

Now we will construct solutions if A - N or B - M . WLOG assume that A - N . Let
N = pA + q, M = rB + s, where p, q, r, s are positive integers and q < A and s < B. We
will try to now “almost” tile the N ×M grid with the same A×B rectangle. Consider
an A×B rectangle with every number negative except the bottom right corner, which
is chosen such that the sum of the numbers in the A × B rectangle is 0. Clearly we
can choose the positive numbers to be all different, thus every number in this A × B
rectangle is different. Let this set of numbers be S. Now we consider a (p+1)A× (r+1)B
rectangle and tile with (p + 1)(q + 1) A×B rectangles of the format. Now we remove
p − q rows from the bottom and r − s rows from the left. We are left with a N ×M
grid where every A×B rectangle consists exactly of the numbers in S, and the sum is
negative because we cropped out part of the A×B rectangles tiling the bottom left of
the original (p + 1)A× (q + 1)B rectangles such that we kept negative numbers, making
the overall sum negative. A case of A = 2, B = 3, N = 5,M = 7 is shown below.

−1 −2 −3 −1 −2 −3 −1
−4 −5 15 −4 −5 15 −4
−1 −2 −3 −1 −2 −3 −1
−4 −5 15 −4 −5 15 −4
−1 −2 −3 −1 −2 −3 −1

Problem: Ayush Varshney
Editorial: Timothy Qian
Solutions: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2019/solutions/ContradictoryCanele.cpp
https://mbit.mbhs.edu/archive/2019/solutions/ContradictoryCanele.java
https://mbit.mbhs.edu/archive/2019/solutions/ContradictoryCanele.py

(November 2019) mBIT Varsity Solutions

§10 Cake Cutting

We first introduce some basic terminology to help with the understanding of the so-
lution. In this solution, angles are taken counterclockwise. Say we want to find the
number of polygons that P = (x, y) is contained in if we have a polygon with vertices
(x1, y1), . . . , (xN , yN) in counter clockwise order, labeled V1, . . . , VN respectively. Say we
choose vertices. Now say that we want to count the k sided polygons that contain this
point. Let the degree angle di = ∠ViPVi+1 where VN+1 = v1.

We will use complementary counting to count the number of k gons. There are
(
N
k

)
polygons as a preliminary count. Now we subtract the number of polygons that don’t
contain P . Say that that we choose vertices U1, . . . , Uk. Then the only way this polygon
doesn’t contain P is if there is an i such that ∠UiPUi+1 ≥ 180◦ where Uk+1 = U1 Call
such polygons bad. We count these such polygons by doing casework. Say U1 = Vi is in a
polygon that is bad such that U1PU2 ≥ 180◦. Let’s say Vj is the first counterclockwise
vertex from Vi such that ViPVj ≥ 180◦. Then any set of k − 1 vertices we choose from
Vj , Vj+1, . . . , Vi−1 where these are going counterclockwise. Say that in this set there are
M vertices. Then the number of polygons is

(
M
k−1

)
we must sum this over all k that

are greater than or equal to 3. By the binomial theorem this is 2M − 1−M . We can
compute the Vj for each Vi using line sweep. Thus for each point P , we can compute the
number of polygons containing it in O(N). Thus the overall complexity is O(NQ).

Problem: Timothy Qian
Editorial: Timothy Qian
Solutions: C++, Java Python

11

https://mbit.mbhs.edu/archive/2019/solutions/CakeCutting.cpp
https://mbit.mbhs.edu/archive/2019/solutions/CakeCutting.java
https://mbit.mbhs.edu/archive/2019/solutions/CakeCutting.py

(November 2019) mBIT Varsity Solutions

§11 Lost Child

First of all, we solve a simpler version of the problem. Let’s say that Gabe starts at a
location which we will represent with ~a and ends at a location represented by ~b, traveling
in a straight segment, and Anna starts at a location which we will represent with ~c and
ends at ~d, also traveling in a straight segment. Furthermore, say they start at ~a and ~c at
the same time and reach ~b and ~d at the same time. Thus at any point in time we can
represent their locations with t~a + (1− t)~b and t~c + (1− t)~d where t ∈ [0, 1]. If we take
the difference, we want to minimize the magnitude of the vector t(~a− ~c) + (1− t)(~b− ~d)
for t ∈ [0, 1]. Letting ~e = ~a− ~c and ~f = ~b− ~d. we want to minimize t~e + (1− t)~f . This
is minimizing the distance from a point on the line segment from ~e to ~f to the origin,
which we can do in O(1) time. An alternative way without having to resort to vectors is
noticing that the distance is a unimodal (monotonic) function, and thus we can apply
ternary search.

Now we want to show that we can reduce the problem to this simpler version. We can
calculate the time that Gabe and Anna will reach the endpoint of each segment, and
compute where the other is at that time. Thus we can create add these points to the
points that Gabe and Anna have to pass through, reducing the problem to the previous
problem. This can be done in O(N + M). Thus the overall time complexity is now
O(N + M), or O(N logN + M logM) if ternary search is applied.

Problem: Timothy Qian
Editorial: Timothy Qian
Solutions: C++ Java Python

12

https://mbit.mbhs.edu/archive/2019/solutions/LostChild.cpp
https://mbit.mbhs.edu/archive/2019/solutions/LostChild.java
https://mbit.mbhs.edu/archive/2019/solutions/LostChild.py

(November 2019) mBIT Varsity Solutions

§12 Outbreak

Let’s first solve the problem assuming all queries are on the whole array. Using exponent

rules, we have that the number that we multiply by for each query,
(∏N−1

i=0 (Bi)
X(i+1)

)
,

is equal to
(∏N−1

i=0 (Bi)
(i+1)

)X
. Since all Bi are constant throughout, we can simply

precompute
∏N−1

i=0 (Bi)
(i+1) and raise it to the power of X for each update with modular

exponentiation. With this strategy in mind, we can now apply it to a segment tree.

First, how do we apply an update to a segment, since the update doesn’t necessarily
start where the segment starts? If the update is on [LQ, RQ] and the segment is on

[LS , RS], then the segment is being multiplied by
(∏RS

i=LS
(Bi)

(i−LQ+1)
)X

, which is equal

to
(∏RS

i=LS
(Bi)

i−LS ·
∏RS

i=LS
(Bi)

(LS−LQ+1)
)X

.

The second part,
∏RS

i=LS
(Bi)

(LS−LQ+1), can be further reduced to
(∏RS

i=LS
(Bi)

)(LS−LQ+1)
.

We can compute
∏RS

i=LS
(Bi) in constant time for any segment by precomputing prefix

products and the modular multiplicative inverses for each of those products, then raise it
to any power when necessary.

The first part,
∏RS

i=LS
(Bi)

i−LS , which is equal to

∏RS
i=LS

(Bi)
i

(
∏RS

i=LS
(Bi))

LS
, can be found for any

segment with a similar strategy. If we compute the prefix products (and their inverses)
of (Bi)

i, then we can obtain
∏RS

i=LS
(Bi)

i in constant time. We can then divide (multiply

by the multiplicative inverse) by
(∏RS

i=LS
(Bi)

)LS

, which we can find in logarithmic time

using our precomputation of the second part and modular exponentiation.

Before we go further, let’s use some shorthands so this editorial doesn’t have five more
pages of pi notation. For a segment which spans some range [L,R], let its raised product
be the product obtained in the paragraph above:

∏RS
i=LS

(Bi)
i−LS and let its range product

be simply the product of each Bi in the range:
∏RS

i=LS
(Bi). Then, we can represent a

segment as the exponents on these two values. Initially for each segment, the coefficient
for the raised product is 0, and the coefficient for the range product is 1.

Each node in the segment tree will store the current product of the segment. We have
range updates, so we need to apply lazy propagation. We’ll represent each segment in
the lazy array with two values: its coefficients on its raised product and range product.
Let the coefficient on the raised product be E (for exponent) and the coefficient on the
range product be R. For a segment [L,R] with children [L,M] and [M + 1, R] (where
M =

⌊
L+R
2

⌋
), its coefficients will have different effects on its left and right children.

When we evaluate the lazy values of some parent segments, we must update the lazy
values of its children (unless it’s a leaf). For the left child: Eleft = Eleft + Eparent and
Rleft = Rleft+Rparent. For the right child, we still have that Eright = Eright+Eparent, but
the update for Rright is different. Because the right child’s start is (M + 1)−L positions
to the right, we have to add Eparent · ((M + 1)−L) to each of the coefficients, which is the
same as adding that to Rright. Therefore, the change in Rright is Eparent · ((M + 1)− L).

Now that we have a way of updating children, updating the actual segments based on
the coefficients is simple. We just raise the range product to Ri and the raised product
to Ei, then multiply them both with the current value at the segment.

13

(November 2019) mBIT Varsity Solutions

This approach will have the standard O(Q logN) from the segment tree, plus an extra
log factor from modular exponentiation. For initializing the segment tree, we visit O(N)
segments and perform modular exponentiation on each of them at least once, so it
takes O(N log 1018) overall. Combining these, our total complexity is O(N log 1018 +
Q logN log 1018).

Problem: Colin Galen
Editorial: Colin Galen
Solutions: C++, Java Python

14

https://mbit.mbhs.edu/archive/2019/solutions/Outbreak.cpp
https://mbit.mbhs.edu/archive/2019/solutions/Outbreak.java
https://mbit.mbhs.edu/archive/2019/solutions/Outbreak.py

	Baking Pan
	Frosting Patterns
	Mountain Mileage
	Milky Way
	Coffee Swapping
	Hot Cake
	Cupcake Distribution
	Secret Base
	Contradictory Canelé
	Cake Cutting
	Lost Child
	Outbreak

