
Fall 2020 mBIT Standard Editorial

November 14, 2020

This editorial provides the intended solutions to each problem as well as accepted
programs in each supported language. In some cases, the given programs may employ
different algorithms than the one described in the editorial. For more complex problems,
multiple solutions may be given, in which case there will be programs for each solution.
Nevertheless, problems are likely to have solutions which are not covered here and we
would be interested to hear about any such solutions the reader may devise.

Contents

1 Apple Pie 2

2 Double Trouble 3

3 Explorers 4

4 Banquet 5

5 Climbing Trees 6

6 Weights 7

7 Stone Piles 8

8 Number Game 9

9 Heating Rocks 11

10 Calendars 13

11 Cathedral 14

12 Gemstones 15

1

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§1 Apple Pie

Solution 1
Claire has N apples and will need to buy K · 10−N more apples. In order to do this,
she must purchase d10K−N

M e more baskets.

Time complexity: O(1)

Solution 2
Keep adding M to the number of apples Claire has (representing buying baskets) until
she has enough.

Time complexity: O(K)

Problem: Ayush Varshney
Flavortext: Gabriel Wu
Editorial: Claire Zhang
Code: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2020f/solutions/ApplePie.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/ApplePie.java
https://mbit.mbhs.edu/archive/2020f/solutions/ApplePie.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§2 Double Trouble

Looping through the string, keep track of “runs”, substrings composed of only one
character. When you encounter a new character, check to see if the current run has a
length of 2; if so, it should be ignored, but otherwise, it should be printed. The final
output will consist of exactly the desired runs.

Time complexity: O(N)

Problem: Gabriel Wu
Flavortext: Gabriel Wu
Editorial: Claire Zhang
Code: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2020f/solutions/DoubleTrouble.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/DoubleTrouble.java
https://mbit.mbhs.edu/archive/2020f/solutions/DoubleTrouble.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§3 Explorers

We can simulate the paths of Zheng and Yang by keeping track of their current positions
and the directions they are facing in. Zheng will initially face left. Each next region will
be one region further in his horizontal direction, except for when that direction would
bring him out of bounds, in which case he will always moves upwards and then invert his
horizontal direction. Similarly, Yang will initially face downwards and always move one
region further in his vertical direction, except for when that brings him out of bounds, in
which case he will always move right and invert his vertical direction. At the start of
each move (to include the first region), check if Zheng and Yang are at the same region.

Time complexity: O(NM)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2020f/solutions/Explorers.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Explorers.java
https://mbit.mbhs.edu/archive/2020f/solutions/Explorers.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§4 Banquet

In this problem, it is fundamental that
∑n

i=1 ai = n, which means that every plate
must be allocated to a stack in the final state. Let stack i be the stack of plates in
position i in the final position. We claim that it is optimal to move the first a1 plates
to stack 1, the next a2 plates to stack 2, and so on, regardless of the positions of the stacks.

If we let sx denote the position of the stack plate x moves to, then for every pair of plates
at positions i and j with i < j, si ≤ sj . To prove the optimality of this strategy, we will
assume that there exists a pair of plates at positions i and j such that i < j but si > sj
and show that it is just as good or better to swap the stacks they move to. There are
three unique (possibly overlapping) cases for the relative positions of the plates and their
stacks:

1. i ≤ sj < si ≤ j. The original time for moving plates i and j is (si − i) + (j − sj) =
((sj − i) + (si − sj)) + ((j − si) + (si − sj)) > (sj − i) + (j − si).

2. sj ≤ i < j ≤ si. The original time is (si − i) + (j − sj) = ((si − j) + (j − i)) + ((i−
sj) + (j − i)) > (si − j) + (i− sj).

3. Exactly one of i or j is in between si and sj , inclusive. Without loss of generality,
assume i is in between, so sj ≤ i ≤ si < j. The original time is (si− i) + (j − sj) =
((i− sj) + (si− i)− (i− sj)) + ((j− si) + (si− sj)) = (i− sj) + (j− si) + 2(si− i) ≥
(i− sj) + (j − si).

Therefore, an optimal solution would be to process the plates from left to right and
calculate the time needed to move each plate to the leftmost incomplete stack.

Time complexity: O(N)

Problem: Jeffrey Tong
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2020f/solutions/Banquet.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Banquet.java
https://mbit.mbhs.edu/archive/2020f/solutions/Banquet.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§5 Climbing Trees

We can observe that if Joe can visit a tree with height j immediately after a tree with
height i, he can also visit all trees with heights between i and j. Thus, we can construct
an algorithm as follows:

First, we sort the trees by height. Starting at the lowest tree, we move upwards to the
next tree and keep track of how many meters we have ascended. If the next tree is not
reachable (or if we are at the tallest tree), store the height climbed. Then repeat until
we reach the tallest tree in the forest, making sure to overwrite the stored height climbed
if we just climbed a greater distance in the current section.

Time complexity: O(N logN)

Problem: Claire Zhang
Flavortext: Evan Wang
Editorial: Evan Wang
Code: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.java
https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§6 Weights

The grouping with the maximum difference between the centers of mass must consist of
one group with the k lightest weights (1 ≤ k ≤ N − 1) and the other with the remaining
weights. If this were not the case, by swapping some pair of weights to meet this condition,
the lighter group would have a lower center of mass and the heavier group a higher one,
leading to a greater difference.

To find the optimal split, k, and the difference, we can first sort the weights, compute
prefix sums, and test all splits by computing the difference between the centers of mass.

Time complexity: O(N logN)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2020f/solutions/Weights.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Weights.java
https://mbit.mbhs.edu/archive/2020f/solutions/Weights.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§7 Stone Piles

There are many ways for Gabe to move the stones in linear time and output complexity.
One method is as follows:

Represent each pile as a stack for easy retrieval. This requires that the stones for each
pile be read backwards.

1. Move all stones to pile 1. This takes at most N moves.

2. While pile 1 is nonempty, if the top stone is labeled 1 or 2, move it to pile 2.
Otherwise, move it to its final stack. This takes exactly N moves.

3. While pile 2 is nonempty, if the top stone is labeled 1, move it to pile 1, and if it is
labeled 2, move it to pile 3. This takes at most N moves.

4. Move all the stones labeled 2 that are on top of stack 3 back to stack 2. This takes
at most N moves.

Because each step uses no more than N moves, the total number of moves used is bounded
by 4N or 4 · 105 for N = 105; the bound in the statement is set higher to discourage
reverse-engineering of the solution. In practice, it is usually possible to use significantly
fewer moves than 4N .

Time complexity: O(N)
Output Complexity: O(N)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.java
https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§8 Number Game

Solution 1
Let s[a : b] be the number represented by the substring of s from indices a to b, inclusive
(with indices starting from 1). Let |y| be the number of digits in y.

For any digit 0 ≤ d ≤ 9, 0 ≤ d2 ≤ d3 ≤ 729, meaning that each digit in x corresponds
to between 1 and 3 digits in y. Thus, if a valid x exists, there must be some 1 ≤ k ≤ 3
such that last k digits of y correspond to some d and the first |y| − k digits of y also
corresponds to a valid x. This recursive structure enables us to use dynamic programming.

Let

f(n) :=

{
The smallest digit d such that d2 = n or d3 = n if d exists
−1 otherwise

.

We will compute an array dp such that for all 1 ≤ i ≤ |y|, dp[i] is the minimum integer k
such that there is an xi corresponding to y[1 : i] and xi’s last digit corresponds to the
last k digits of y[1 : i], or −1 if no such k exists.

For convenience, we also set dp[0] = 0, representing that it is possible to reach the
beginning of y using an empty x0, and dp[i] = −1 for i > 0.

The transition is

dp[i] =

{
k if dp[i− k] 6= −1 and f(y[i− k + 1 : i]) 6= −1 for some 1 ≤ k ≤ 3
−1 otherwise

.

(If more than one k value is possible, return the first one found.)

Once we reach the end of y, if dp[|y|] = −1, we know that no such x exists and we output
−1. Otherwise, we can work backwards to reconstruct x using dp since each index of
dp gives the length of a substring for which a corresponding d exists, so it points to a
previous index of dp for which we also found a valid xi. Keep moving backwards through
y until you reach the beginning.

Note: This solution always finds the value of x with the most digits because of the order
in which we select dp[i]. By simply reversing this order, you can find the shortest value of x.

This solution is used by the C++ and Python code.

Time complexity: O(log y)

Solution 2
Let the set of digit strings in y that can correspond to a single digit in x be S. Since
49, 81, and 125 can each be decomposed into two shorter members of S, it is pos-
sible to construct x from all valid y’s using only the set of corresponding strings
T = {0, 1, 4, 9, 16, 25, 36, 64, 8, 27, 216, 343, 512, 729}. Dividing T into lists based on
the strings’ first digits produces the following:

9

(November 14, 2020) Fall 2020 mBIT Standard Editorial

First digit Possibilities

0 0
1 1, 16
2 25, 27, 216
3 36, 343
4 4
5 512
6 64
7 729
8 8
9 9

Notice that none of the possibilities for a fixed starting digit is the prefix of another
possibility with that starting digit with the exception of 1. However, 6 must always be
followed by 4 in a y with a corresponding x, meaning that any y starting with 16 will
start with 164. It cannot be required that the 4 be used as the start of a new number,
as shown previously, so it suffices to show that the prefix can be created in two ways:
16 + 4 and 1 + 64 (the greedy method). Therefore, if it is possible to construct x, it is
possible to do so with a greedy algorithm instead of dynamic programming by checking
the first two digits of each chunk in y and using casework.

This solution is used by the Java code.

Time complexity: O(log y)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Jeffrey Tong
Code: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2020f/solutions/NumberGame.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/NumberGame.java
https://mbit.mbhs.edu/archive/2020f/solutions/NumberGame.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§9 Heating Rocks

Solution 1
Compute an array a such that ai = max(X − Ti, 0), the number of degrees that rock i
must be heated. The problem is now equivalent to finding the minimum time needed to
reduce each element of a to zero by decrementing up to two elements each second.

Let k be the index of an element in a equal to the maximum element and let S be the
sum of a. We must spend ak seconds reducing ak to zero. If 2ak > S ⇐⇒ ak > S − ak,
it is possible to achieve this lower bound: since ak exceeds the sum of all other elements,
decrement ak and any other positive element of a (if such an element exists) ak times.

Otherwise, ak ≤ S − ak. Since we can decrease S by at most 2 in any second, a lower
bound for the answer is

⌈
S
2

⌉
. We claim that

⌈
S
2

⌉
is the answer in this case.

Proof. We will achieve the lower bound of
⌈
S
2

⌉
seconds as long as we decrement exactly

one element of a during at most one second (if S is odd) and two elements of a during
every other second. If S is odd, S − ak 6= ak, so S − ak > ak, meaning that we can spend
one second to decrement any element other than ak to make S even while maintaining
that S − ak ≥ ak and ak is the maximum. It now suffices to prove that it is possible to
solve this case for even S in exactly S

2 seconds.

Consider a representation of our strategy as a S
2 × 2 table such that all the rocks which

we put in the r-th row are heated during the r-th second. The strategy satisfies the
problem as long as we never put a rock in the same row of the table twice and we put
the i-th rock in the table ai times. To construct this strategy, we can simply start from
the top of first column and fill in ai × 1 rectangles for the i-th rock going from i = 1 to
n, breaking up the rectangle into two and wrapping around if it exceeds the bottom of
the column; the construction for S = 12 and a = [2, 5, 3, 1, 1] is shown as an example:

Notice that only one element can wrap around; if we call this element aw, it remains to
verify that the two pieces of aw never overlap. However, this is easy to do, as aw ≤ ak ≤ S

2
and the pieces of aw start from opposite ends of the columns, so they cannot overlap.

Time complexity: O(N)

11

(November 14, 2020) Fall 2020 mBIT Standard Editorial

Solution 2 (subtask 1 only)
For small N and X, it is also valid to greedily find the coldest two rocks and heat them
during each second that the rocks are not both at X ◦C already. Each iteration can be
done directly in O(N) or in O(logN) with a priority queue; in both cases, this algorithm
will pass subtask 1 but not subtask 2.

It can be proven that this strategy is optimal via an induction argument.

Time complexity: O(N2X), O(NX logN)

Problem: Ayush Varshney
Flavortext: Gabriel Wu
Editorial: Jeffrey Tong
Code: C++, Java, Python

12

https://mbit.mbhs.edu/archive/2020f/solutions/HeatingRocks.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/HeatingRocks.java
https://mbit.mbhs.edu/archive/2020f/solutions/HeatingRocks.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§10 Calendars

The brute-force approach of computing dist(A,C) after rotating B 0, 1, 2, ..., and N − 1
times to the right runs in O(N2), which is too slow. However, if we are able to determine
by how much dist(A,C) changes after each rotation in constant time, we can reduce our
algorithm’s time complexity to O(N).

First, compute dist at the beginning. Let ∆ denote the change in dist that will occur
after we rotate C one more time to the right if we pretend that the last number simply
moves forward one more space instead of wrapping around. ∆ may be computed at the
beginning by noting the relative positions of each number in A and B.

During each rotation, we first need to add ∆ − 1 to dist to account for the move-
ment of the first N − 1 elements. Let y be the last element of C; we also add
(posA(y) − 0) − (N − 1 − posA(y)) = 2posA(y) − N + 1 to dist to account for the
wrapping of y. Therefore, we add ∆ + 2posA(y)−N in total to dist for this rotation.

To compute the next ∆, we notice that it will change between rotations exactly when,
for some 1 ≤ x ≤ N , posA(x) − posC(x) changes signs. This can occur in two cases:
when posA(x) = posC(x) and when posC(x) wraps around from N to 1. Thus, if k is the
number of x values for which posA(x) = posC(x) after the rotation, ∆ will change by
2k − 2 (−2 since y’s contribution to ∆ will always switch from +1 to −1, except when
posA(y) = 1, in which case the 2k immediately reverts it anyways).

Thus, if we precompute k for each rotation in a hashmap during precomputation and
track the last number in C, we can recompute dist after each rotation in constant time.

Time complexity: O(N)

Problem: Maxwell Zhang
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

13

https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.java
https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§11 Cathedral

Since P is non-increasing, all subarrays of P must also be non-increasing. Because of
this, each circulation of a subarray decreases the left-side sum and increases the right-side
sum. Therefore, the difference in the left and right sums changes monotonically.

For each query, we can binary search for the number of circulations after which the
array obtains minimum unevenness. After r circulations (we only need to check 0 ≤
r ≤ k − 1 by symmetry), the left sum is

∑s+r+k−1
i=s+r Pi, and the right sum is simply∑s+2k−1

i=s Pi− (left sum). We can obtain these sums in O(1) time by precomputing prefix
sums of P .

Time complexity: O(N + Q logN)

Problem: Claire Zhang
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

14

https://mbit.mbhs.edu/archive/2020f/solutions/Cathedral.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Cathedral.java
https://mbit.mbhs.edu/archive/2020f/solutions/Cathedral.py

(November 14, 2020) Fall 2020 mBIT Standard Editorial

§12 Gemstones

The maximum number of strings is N − 1, attained exactly when one string of each
length between 2 and N is used, which is always possible; thus, Maxwell must use all
possible lengths. Notice that the string of length N must cover an entire edge of the
triangle, leaving a subproblem with size N − 1. Proceed with row-column DP.

If we rearrange the gems into a triangle with one side parallel to the x-axis and one to
the y-axis, as shown, we can classify each string as being on a row, column, or diagonal.
All indices in this solution start from 0.

Let p(“row”, i, j, len) be the price of the string starting at gem j in row i with length
len and define p likewise for “col” and “diag”. p can be calculated directly in O(N).

Define f(r, c, len) as the maximum total price for the subtriangle with bottom-left corner
at row r, column c, and side length len, and memoize f ’s results in an array dp. If

f(r, c, len) =

0 if len = 1
dp[r][c][len] if dp[r][c][len] 6= −1
max(

p(“row”, r, c, len) + f(r − 1, c, len− 1),
p(“col”, c, r − len + 1, len) + f(r, c + 1, len− 1), otherwise
p(“diag”, r − len + 1− c, c, len) + f(r, c, len− 1)

)

, f(0, 0, N) will be the final answer, and as f is computed on each DP state (no more than
N ·N ·N) exactly once, the computation will be done withO(N4) time andO(N3) memory.

To solve subtask 2, we must reduce the time complexity to O(N3) by computing p in
constant time. Let row[i][j][k] be the price of the string in row i starting from gem j
with length k, and define col and diag analogously. These arrays can each be computed
in O(N3) so that string prices can be accessed in O(1) in the transition.

To solve subtask 3, only precompute the number of gems of each color in the prefixes of
each row, column, and diagonal so that p can be computed via prefix sums, reducing the
time and memory complexity of preprocessing to O(N2). A final optimization that will
probably be necessary is to rewrite dp and f to only use the lengths currently needed in
the transition (len and len− 1), reducing the memory complexity of our DP to O(N2).

Time complexity: O(N3)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Jeffrey Tong
Code: C++, Java, Python

15

https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.java
https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.py

	Apple Pie
	Double Trouble
	Explorers
	Banquet
	Climbing Trees
	Weights
	Stone Piles
	Number Game
	Heating Rocks
	Calendars
	Cathedral
	Gemstones

