
Fall 2020 mBIT Advanced Editorial

November 14, 2020

This editorial provides the intended solutions to each problem as well as accepted
programs in each supported language. In some cases, the given programs may employ
different algorithms than the one described in the editorial. For more complex problems,
multiple solutions may be given, in which case there will be programs for each solution.
Nevertheless, problems are likely to have solutions which are not covered here and we
would be interested to hear about any such solutions the reader may devise.

Contents

1 Climbing Trees 2

2 Stone Piles 3

3 Calendars 4

4 The Duplicator 5

5 Locked in the Past 6

6 Night of the Candles 7

7 Gemstones 8

8 The Flock of Rams 9

9 Textile Display 10

10 Tanya’s Revenge 11

11 Sphinx Economics 12

12 Building Atlantis 14

1

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§1 Climbing Trees

We can observe that if Joe can visit a tree with height j immediately after a tree with
height i, he can also visit all trees with heights between i and j. Thus, we can construct
an algorithm as follows:

First, we sort the trees by height. Starting at the lowest tree, we move upwards to the
next tree and keep track of how many meters we have ascended. If the next tree is not
reachable (or if we are at the tallest tree), store the height climbed. Then repeat until
we reach the tallest tree in the forest, making sure to overwrite the stored height climbed
if we just climbed a greater distance in the current section.

Time complexity: O(N logN)

Problem: Claire Zhang
Flavortext: Evan Wang
Editorial: Evan Wang
Code: C++, Java, Python

2

https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.java
https://mbit.mbhs.edu/archive/2020f/solutions/ClimbingTrees.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§2 Stone Piles

There are many ways for Gabe to move the stones in linear time and output complexity.
One method is as follows:

Represent each pile as a stack for easy retrieval. This requires that the stones for each
pile be read backwards.

1. Move all stones to pile 1. This takes at most N moves.

2. While pile 1 is nonempty, if the top stone is labeled 1 or 2, move it to pile 2.
Otherwise, move it to its final stack. This takes exactly N moves.

3. While pile 2 is nonempty, if the top stone is labeled 1, move it to pile 1, and if it is
labeled 2, move it to pile 3. This takes at most N moves.

4. Move all the stones labeled 2 that are on top of stack 3 back to stack 2. This takes
at most N moves.

Because each step uses no more than N moves, the total number of moves used is bounded
by 4N or 4 · 105 for N = 105; the bound in the statement is set higher to discourage
reverse-engineering of the solution. In practice, it is usually possible to use significantly
fewer moves than 4N .

Time complexity: O(N)
Output Complexity: O(N)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

3

https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.java
https://mbit.mbhs.edu/archive/2020f/solutions/StonePiles.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§3 Calendars

The brute-force approach of computing dist(A,C) after rotating B 0, 1, 2, ..., and N − 1
times to the right runs in O(N2), which is too slow. However, if we are able to determine
by how much dist(A,C) changes after each rotation in constant time, we can reduce our
algorithm’s time complexity to O(N).

First, compute dist at the beginning. Let ∆ denote the change in dist that will occur
after we rotate C one more time to the right if we pretend that the last number simply
moves forward one more space instead of wrapping around. ∆ may be computed at the
beginning by noting the relative positions of each number in A and B.

During each rotation, we first need to add ∆ − 1 to dist to account for the move-
ment of the first N − 1 elements. Let y be the last element of C; we also add
(posA(y) − 0) − (N − 1 − posA(y)) = 2posA(y) − N + 1 to dist to account for the
wrapping of y. Therefore, we add ∆ + 2posA(y)−N in total to dist for this rotation.

To compute the next ∆, we notice that it will change between rotations exactly when,
for some 1 ≤ x ≤ N , posA(x) − posC(x) changes signs. This can occur in two cases:
when posA(x) = posC(x) and when posC(x) wraps around from N to 1. Thus, if k is the
number of x values for which posA(x) = posC(x) after the rotation, ∆ will change by
2k − 2 (−2 since y’s contribution to ∆ will always switch from +1 to −1, except when
posA(y) = 1, in which case the 2k immediately reverts it anyways).

Thus, if we precompute k for each rotation in a hashmap during precomputation and
track the last number in C, we can recompute dist after each rotation in constant time.

Time complexity: O(N)

Problem: Maxwell Zhang
Flavortext: Jeffrey Tong
Editorial: Claire Zhang
Code: C++, Java, Python

4

https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.java
https://mbit.mbhs.edu/archive/2020f/solutions/Calendars.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§4 The Duplicator

We can approach this problem with complementary counting. We start by assuming all
pairs 1 ≤ i < j ≤ N are valid, with

(
N
2

)
pairs. Then we subtract from our starting count

all pairs that do not fit the criteria. We iterate through array A, and keep track of how
many of each element has appeared. When we move on to the next index j, we know
that the number of invalid indices i that do not satisfy the conditions are the amount
of times Aj has appeared previously in the array A (since we could choose any of the
previous indices that Aj has appeared as our i index, which would make the condition
invalid because Ai = Aj), so for each Aj we encounter, we subtract by how many times
it has already appeared previously. We then repeat the process for array B.

However, in doing this process, we have counted cases in which Bi = Bj and Ai = Aj

twice, so we iterate through both arrays and repeat the process above, but keeping track
of how many of each pair has been encountered, and instead of subtracting how many
times the pair 〈Ai, Bi〉 has appeared, we add how many times it has appeared, upon
encountering the pair.

In practice, we can implement this with three maps (one for A, one for B, and one for
the pairs) and iterating once through both arrays.

Time complexity: O(N) or O(N logN)

Problem: Timothy Qian
Flavortext: Evan Wang
Editorial: Evan Wang
Code: C++, Java, Python

5

https://mbit.mbhs.edu/archive/2020f/solutions/TheDuplicator.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/TheDuplicator.java
https://mbit.mbhs.edu/archive/2020f/solutions/TheDuplicator.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§5 Locked in the Past

Call an optimal set of moves one that uses the minimal number of moves to reach 0, . . . , 0.
First, we show that there exists an optimal set of moves such that a wheel will only be
increased or decreased, never both. Let the total interval size of a set of moves with
intervals [a, b] be equivalent to the sum of b− a for all increase or decrease moves [a, b].
Consider a wheel that has two moves that has an increase move of wheels [a, b] and a
decrease move of wheels [c, d]. The first case is if [a, b] is contained within [c, d]. Then
we can break this move into two nonoverlapping decrease moves. Note that the total
interval size sum shrinks. If [a, b] intersects [c, d] such that a ≤ c ≤ b ≤ d, then we can
break the moves again similarly into two intervals [a, c], [b, d], one with one increase move
and one with a decrease move, strictly shrinking the total interval size. These intervals
again don’t overlap. Therefore, if there are overlapping increase and decrease moves, we
can split them so they don’t overlap with the same number of moves and strictly smaller
total interval size. The total interval size can’t decrease forever, so therefore at the end
of this process, no two increase or decrease intervals will intersect.

Call an optimal set of moves good if it only increases or decreases each wheel. Having
established this fact, we note there exists a good set of moves where each wheel rotates up
or down by at most NK. To see why, we can obviously just rotate each wheel individually
by at most NK to achieve this. Now wheels are called up wheels if we only increase
them and down wheels if we only decrease them. Pooling together these observations,
we can use dynamic programming to solve this problem. Let’s say a wheel is currently
at position x. if it is a down wheel, then we only need to consider rotating it down by
x, x + (K + 1), . . . , x + (N − 1) · (K + 1). Similarly, if it is an up wheel, we only need
to consider increasing it by (K + 1)− x, 2 · (K + 1)− x, . . . , N · (K + 1)− x (with some
care taken when x is 0 initially).

Let u[i][j] be the values we must consider for increasing wheel i and d[i][j] be the
values for decreasing wheel j, such that u[i][j] ≤ u[i][j + 1], d[i][j] ≤ d[i][j + 1] as
described above. Thus, we maintain a dp state dp[i][t][j], which designates the minimal
number of moves to rotate wheels 1, . . . , i into place such that wheel i is an up wheel is
t = 0 and a down wheel if t = 1, and j represents how much we rotated it (the O(N)
possible values for rotation). Now consider the case of computing dp[i][0][j] only since
the case of computing dp[i][1][j] is analogous. If wheel i − 1 was a down wheel, then
dp[i][0][j] = dp[i − 1][1][k] + u[i][j]. However, if wheel i − 1 was an up wheel, we have
dp[i][0][j] = dp[i − 1][0][k] + max(0, u[i][j] − u[i − 1][k]). This is because we can “use”
wheel i− 1’s increases for wheel i’s increases because they are both up wheels. In total,
there are O(N2) states with a O(N) transition, leading to an O(N3) solution. However,
one can notice that u[i][j] > u[i− 1][k] if j > k. Thus, these transitions can be optimized
to O(1) using suffix maximums. For more details, see our solution codes.

Time Complexity: O(N2)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

6

https://mbit.mbhs.edu/archive/2020f/solutions/LockedinthePast.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/LockedinthePast.java
https://mbit.mbhs.edu/archive/2020f/solutions/LockedinthePast.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§6 Night of the Candles

We keep track of four lists, which we label U,D,L,R. In each list, we store the indices
of the lit locations that have an unlit candle if you proceed U,D,L,R by one candle
respectively. Each time we process a breeze, we process all candles in the respective list
for the direction of the breeze, lighting up the candles adjacent to each candle in the
list in the corresponding direction. If the candle is already lit, we ignore it. Else, we
process the newly lit candle, and check in each of its four adjacent directions to check
which candles next to it are not lit, and add the newly candle to the corresponding lists.
Overall, each candle gets processed at most 4 times, one for each direction. Therefore,
the complexity of this is O(NM + B).

Time complexity : O(NM + B)

Problem: Gabriel Wu
Flavortext: Maxwell Zhang
Editorial: Timothy Qian
Code: C++, Java, Python

7

https://mbit.mbhs.edu/archive/2020f/solutions/NightoftheCandles.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/NightoftheCandles.java
https://mbit.mbhs.edu/archive/2020f/solutions/NightoftheCandles.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§7 Gemstones

The maximum number of strings is N − 1, attained exactly when one string of each
length between 2 and N is used, which is always possible; thus, Maxwell must use all
possible lengths. Notice that the string of length N must cover an entire edge of the
triangle, leaving a subproblem with size N − 1. Proceed with row-column DP.

If we rearrange the gems into a triangle with one side parallel to the x-axis and one to
the y-axis, as shown, we can classify each string as being on a row, column, or diagonal.
All indices in this solution start from 0.

Let p(“row”, i, j, len) be the price of the string starting at gem j in row i with length
len and define p likewise for “col” and “diag”. p can be calculated directly in O(N).

Define f(r, c, len) as the maximum total price for the subtriangle with bottom-left corner
at row r, column c, and side length len, and memoize f ’s results in an array dp. If

f(r, c, len) =

0 if len = 1
dp[r][c][len] if dp[r][c][len] 6= −1
max(

p(“row”, r, c, len) + f(r − 1, c, len− 1),
p(“col”, c, r − len + 1, len) + f(r, c + 1, len− 1), otherwise
p(“diag”, r − len + 1− c, c, len) + f(r, c, len− 1)

)

, f(0, 0, N) will be the final answer, and as f is computed on each DP state (no more than
N ·N ·N) exactly once, the computation will be done withO(N4) time andO(N3) memory.

To solve subtask 2, we must reduce the time complexity to O(N3) by computing p in
constant time. Let row[i][j][k] be the price of the string in row i starting from gem j
with length k, and define col and diag analogously. These arrays can each be computed
in O(N3) so that string prices can be accessed in O(1) in the transition.

To solve subtask 3, only precompute the number of gems of each color in the prefixes of
each row, column, and diagonal so that p can be computed via prefix sums, reducing the
time and memory complexity of preprocessing to O(N2). A final optimization that will
probably be necessary is to rewrite dp and f to only use the lengths currently needed in
the transition (len and len− 1), reducing the memory complexity of our DP to O(N2).

Time complexity: O(N3)

Problem: Gabriel Wu
Flavortext: Jeffrey Tong
Editorial: Jeffrey Tong
Code: C++, Java, Python

8

https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.java
https://mbit.mbhs.edu/archive/2020f/solutions/Gemstones.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§8 The Flock of Rams

There are two cases to consider.

1. Barusu enters through one cell on the border of the grid, takes two rams, then exits
through that same border cell.

2. Barusu enters through one border cell, takes one ram, then exits. He then enters
through a different border cell, takes another ram, and exits.

We define the distance between two cells as the minimum number of obstacles to break
such that there would then exist an unobstructed path between the cells. To handle
both cases, we precompute distances from each ram to each cell with K 0-1 BFSs, and
precompute the minimal distance from each cell to the border with one multi-source 0-1
BFS. This step takes O(NMK).

Case 1:

An initial idea could be to consider pairs of rams and the following route:

border cell → ram 1 → ram 2 → border cell

However, simply adding the distances between points is wrong, because parts of the route
may overlap, causing us to double count obstacles. Instead, let’s consider a meetup cell.
The route is defined as follows:

border cell→ meetup cell→ ram 1→ meetup cell→ ram 2→ meetup cell→ border cell

Importantly, in an optimal route, there exists a meetup cell such that the three paths
from the meetup cell to the border cell and two rams do not overlap with each other. If
the paths did overlap, we could always shift the meetup cell along the overlapping section
until the paths no longer overlap. It is possible for the meetup cell to be the border cell
or either of the two rams.

Thus, we can simply iterate over all possible meetup cells and take the minimum of the
sum of the distances of the three paths. To avoid O(NMK2), we can precompute the
closest two rams for each cell. Don’t forget to subtract 2 if the meetup cell itself contains
an obstacle, so that the obstacle isn’t counted 3 times. Overall, this case is handled in
O(NM) time. You may have to store only the closest two rams to each cell to fit the
memory limit.

Case 2:

Simply iterate over all pairs of rams and take the pair with minimal sum of distances to
the border. Note that we don’t have to worry about the two paths from the rams to the
borders overlapping, as that is already covered by case 1 (try to see why that’s true).
Overall, this case is handled in O(K2) time.

Time complexity: O(NMK)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Maxwell Zhang
Code: C++, Java, Python

9

https://mbit.mbhs.edu/archive/2020f/solutions/TheFlockofRams.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/TheFlockofRams.java
https://mbit.mbhs.edu/archive/2020f/solutions/TheFlockofRams.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§9 Textile Display

For ease of explanation, I will describe the process instead as an array of textiles with
colors in some order, and we remove textiles one by one from left to right. Let’s consider
the contribution of each color to the answer. Color k has Ck textiles of that color. We
want to characterize how much a certain color adds to the total happiness of a given
ordering.

One can observe that only the last occurrence of a color matters, as a color contributes to
the impression factor as long as it holds at least one occurrence. Since textiles are removed
from the left, if the last occurrence is at index i (one-indexing), then it contributes +i
to the total happiness to the ordering. Specifically, it contributes +1 to the impression
factor after 0, 1, . . . , i− 1 textiles have been removed.

Now let’s ask a different question: for how many orderings does the color k contribute
+1 to the impression factor after removing i− 1 textiles? Well, the only cases where it
doesn’t contribute +1 is if the last occurrence (or equivalently, all occurrences) of the
color are before index i. There are

(
i−1
Ck

)
· Ck! · (N − Ck)! possible ways to do that (we

multiply by Ck! and (N − Ck)! because the textiles are distinguishable). The number of

orderings where color k does contribute is thus
[(

N
Ck

)
−
(
i−1
Ck

)]
· Ck! · (N − Ck)!.

Ok, it’s time to piece it all together. For color k, the amount it contributes to the answer
is the sum of the amount it contributes before removing each textile:

N∑
i=1

([(
N

Ck

)
−
(
i− 1

Ck

)]
· Ck! · (N − Ck)!

)
= Ck! · (N − Ck)! ·

N∑
i=1

[(
N

Ck

)
−
(
i− 1

Ck

)]

= Ck! · (N − Ck)! ·

[
N ·

(
N

Ck

)
−

N∑
i=1

(
i− 1

Ck

)]

= Ck! · (N − Ck)! ·
[
N ·

(
N

Ck

)
−
(

N

Ck + 1

)]
We use hockey-stick identity to simplify the summation expression.

After precomputing factorials and inverse factorials in O(N) time, we can add the
contribution of each color in constant time.

Time complexity: O(N + M)

Problem: Maxwell Zhang
Flavortext: Gabriel Wu
Editorial: Maxwell Zhang
Code: C++, Java, Python

10

https://mbit.mbhs.edu/archive/2020f/solutions/TextileDisplay.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/TextileDisplay.java
https://mbit.mbhs.edu/archive/2020f/solutions/TextileDisplay.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§10 Tanya’s Revenge

To solve this problem, we perform dynamic programming on a tree. Consider the state
dp[i][t][j], where this describes the maximum battle readiness if we have already directed
the paths in the subtree of village i. The remaining two states represent two possibilities:

• If t = 0, then we have dp[i][t][j] means our current state has j directed paths going
upwards through village i, using only the edges in the subtree of village i.

• If t = 1, then we have dp[i][t][j] means our current state has j directed paths going
down through village i that end at battle forts, using only the edges in the subtree
of village i.

One might think that we have to store both the directed paths going upwards through
village i and the number of paths going downwards through village i ending at a battle
fort. However, depending on whether the edges that connects village i to its parent is
oriented, we only need to consider one of these cases. We perform a depth first search
starting from the headquarters at village 1. We evaluate dp[i][t][j] for all children of a
village before we process it. To compute dp[i][t][j] after we’ve computed dp[c][t][j] for
all the children of village i, we perform a knapsack DP to combine two subtrees. This
knapsack DP may seem like it is O(N3). However, we note that when combining two
subtrees of size x, y, we only iterate at most xy times. The number of iterations in our
knapsack DP can be seen to biject to the number of paths between any two villages,
which is in fact O(N2). thus our overall solution is in fact O(N2).

Time complexity: O(N2)

Problem: Colin Galen
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

11

https://mbit.mbhs.edu/archive/2020f/solutions/TanyasRevenge.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/TanyasRevenge.java
https://mbit.mbhs.edu/archive/2020f/solutions/TanyasRevenge.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§11 Sphinx Economics

We first define the state f(i, j), which represents the maximum amount of money Faris
can guarantee at the end of the questions if she currently has $1, there are i questions
left, and the Sphinx has currently picked the same answer j times in a row previously,
where we assume that j < Q.

First, we show that f(i, j) is monotonically nondecreasing as j increases for j ∈ [1, Q− 1].
Assume for the sake of contradiction that f(i, a) > f(i, b) for 1 ≤ a < b ≤ Q− 1. Then,
when determining f(i, b), we can have Faris bet as if j = a, or the Sphinx has already
had a of the same answers in a row. Since every possible scenario if there are i questions
left and has previously had b of the same answers is a subset of the set of scenarios where
there are i questions left and the Sphinx has had a of the answers in a row the same,
Faris can have at least f(i, a) money by the end of the i questions. This means that
f(i, a) ≤ f(i, b) a contradiction.

We establish our base cases. f(1, j) for j < Q− 1 is equal to 1, because Faris have no
guarantee of earning anything. However, f(1, Q− 1) = 2, because the Sphinx is forced to
pick an answer, so Faris should go all in to earn the maximum amount of money. Also,
f(N, 0) = f(N − 1, 1) because Faris should not bet anything on the first round. This
is because there is no guaranteed benefit to anything on the first turn as Faris knows
nothing about what the Sphinx will do.

First, we take care of the case of j = Q−1. In this case, we have f(i, Q−1) = 2·f(i−1, 1),
since the Sphinx is forced to pick an answer, so Faris can bet all of her money. Now we
consider the case of j < Q− 1. First, we define a run as the set of consecutive previous
answers that the Sphinx has chosen that are all the same. There are two cases as to
what to do.

Case 1: Faris picks the same answer as the Sphinx’s run. Let’s say Faris bet 0 ≤ x ≤ 1 this
round. Then if Faris ends up guessing right, she ends up guaranteeing (1+x)·f(i−1, j+1)
dollars. If Faris ends up guessing wrong, she end up guaranteeing (1 − x) · f(i − 1, 1)
dollars. Since “guarantee” implies a worst case scenario, we set f(i, j) = min((1 + x) ·
f(i− 1, j + 1), (1− x) · f(i− 1, 1)). However, since f(i, j) is nondecreasing as j increases,
we have that the minimum of this is always (1− x) · f(i− 1, 1) ≤ (1 + x) · f(i− 1, j). So
Faris should always assume she always loses, and thus the maximum she can guarantee
in this case is (1− x) · f(i− 1, 1). Therefore, she should bet 0, in which case

f(i, j) ≥ f(i− 1, 1)

Case 2: Faris picks the answer that’s different from the Sphinx’s current run. Let’s
say Faris bets 0 ≤ x ≤ 1 this round. Then she has that f(i, j) = min((1 + x) · f(i −
1, 1), (1−x) · f(i− 1, j + 1)). Now, we show that to choose an x to maximize this, the two
components inside the minimum must be equal. Let A = f(i− 1, 1), B = f(i− 1, j + 1),
where we know that A ≤ B by what we’ve shown before. We know B 6= 0 since Faris could
always just bet nothing each time and guarantee her current $1. So this is equivalent to
finding the x that maximizes min(C(1 + x), 1− x) by letting C = A

B for some 0 ≤ C ≤ 1.
Graphing y = min(C · (1 + x), 1− x) from [0, 1], it is clear that the graph consists of two
lines, first with an increasing slope, then with a decreasing slope, so their maximum is
where these two lines intersect. Thus, to maximize the minimum of this, we set these two
components in the minimum equal. We get that (1+x) ·f(i−1, 1) = (1−x) ·f(i−1, j+1).
Solving for x yields

12

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

x =
f(i− 1, j + 1)− f(i− 1, 1)

f(i− 1, 1) + f(i− 1, j + 1)

Thus, plugging this back in yields

f(i, j) ≥ 2 · f(i− 1, j + 1) · f(i− 1, 1)

f(i− 1, j + 1) + f(i− 1, 1)

Now we collate theses two cases, and show that it’s always optimal to go with Case 2.
Note that this is the harmonic mean of f(i− 1, 1) and f(i− 1, j + 1), and we know that
f(i− 1, 1) ≤ f(i− 1, j + 1). Thus, this means that

f(i− 1, 1) ≤ 2 · f(i− 1, j + 1) · f(i− 1, 1)

f(i− 1, j + 1) + f(i− 1, 1)

Thus, we know that it’s optimal to pick something different that the Sphinx’s current
run. Therefore, we have that for j < Q− 1.

f(i, j) =
2 · f(i− 1, j + 1) · f(i− 1, 1)

f(i− 1, j + 1) + f(i− 1, 1)

Thus, using this recurrence, we can calculate the value of f(N, 0) = f(N − 1, 1) in
O(NQ logMOD), which is enough to solve subtask 1.

For subtask 2, we exploit the fact that the recursive formula is based on the harmonic
mean. Perhaps the easiest way to see this is letting g(i, j) = 1

f(i,j) · 2
i. Then our recursion

for j < Q− 1

g(i, j) =

{
g(i− 1, 1) + g(i− 1, j + 1) j < Q− 1

g(i− 1, 1) j = Q− 1

We start with the base case of g(1, 1) = g(1, 2) = · · · = g(1, Q− 2) = 2, g(1, Q− 1) = 1.
Let’s say we let g(0, 1) = 1 and g(i, 1) = 0 for i ≤ −1. Then, we can use induction to
derive that

g(i, 1) = g(i− 1, 1) + g(i− 2, 1) + · · ·+ g(i−Q + 1, 1)

Thus, we can compute g(N − 1, 1) in O(N) using prefix sums. And then we can convert
back from g(N − 1, 1) to f(N − 1, 1) for an overall O(N) solution.

Fun fact: The general formula for g(i, 1) is actually the formula for the Q− 1-Fibonacci
number. Using matrix exponentiation, you can solve problem in O(Q3 logN). We didn’t
put this on the test because we didn’t feel it added anything nice to the problem.

Time complexity: O(NQ logMOD),O(N),O(Q3 logN)

Problem: Gabriel Wu and Timothy Qian
Flavortext: Timothy Qian
Editorial: Timothy Qian
Code: C++, Java, Python

13

https://mbit.mbhs.edu/archive/2020f/solutions/SphinxEconomics.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/SphinxEconomics.java
https://mbit.mbhs.edu/archive/2020f/solutions/SphinxEconomics.py

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

§12 Building Atlantis

Notice that, as long as each pillar is covered by at least one robot, the heights of all of the
pillars grow arbitrarily high. Thus, after a long time, the value di of any robot is pretty
much nothing relative to the height of the pillars. Thus, we can treat this problem as
continuous: instead of considering discrete moves, we think of the robots as distributing
“growth rate” among their interval. Let P (i, j) be the proportion of the time that robot i
chooses to grow pillar j as time grows to infinity. Note that P (i, j) = 0 whenever j < li
or j > ri. Now, define the growth rate of a pillar j be

G(j) :=
N∑
i=1

diP (i, j).

The asymptotic ratio of the heights of two pillars is just equal to the ratio of their growth
rates (think of this as L’Hopital’s rule). Now the problem is reduced to finding the
growth rate of each pillar. Observe that if there are two pillars j and k that are both in
the interval of robot i, and if G(j) < G(k), then P (i, k) must be 0. This is because if k
is asymptotically taller than j, then robot i will never choose k over j.

This inspires the following solution. We can binary search for the minimum growth rate,
and then do a separate binary search for the maximum growth rate. To compute the
minimum growth rate, we ask the confirmation question “Is there a way for each
robot to distribute its growth rate such that G(j) ≥ X for all pillars j”? (In
this question we are temporarily ignoring the fact that the behavior of the robots is
determined deterministically, instead treating it as if there is a single mastermind that
controls the robots’ choices.) If the answer to the confirmation question is no, then
obviously all pillars can’t have at least X growth rate when the robots are following their
usual algorithm, meaning that the minimum growth rate must be less than X. Here,
“usual algorithm” refers to the robots’ normal process of always choosing the minimum
height pillar on a move.

What if the answer to the confirmation question is yes? For the sake of contradiction,
assume that when the robots are following their usual algorithm, there is a non-empty
set of pillars that have less than X growth rate. Let S be this set. Then any robot with
an interval containing any pillar in S must be devoting all of their growth rate to pillars
in S (by our previous observation). But if as many robots as possible are contributing to
the total growth rate of S, and yet still no pillar in S is hitting X growth rate, then the
answer to the confirmation question cannot be yes. This is a contradiction. Therefore,
if the answer to the confirmation questions is yes, then when the robots are following
their usual algorithm all pillars have at least X growth rate. Therefore the minimum
growth rate is greater than equal to X iff the answer to the confirmation
question is yes.

So how do we actually answer this confirmation question for the minimum? There is
a slick greedy solution. Sort all the robots by left endpoint, then sweep from left to
right. At pillar j, first add all robots with li = j to a priority queue. Then greedily
take growth rate from the robots that will “expire first” (AKA has the left-most right
endpoint), until you have reached X growth rate for that pillar. Proceed to the next
pillar. If you ever run out of robots in the priority queue, the answer is automatically
no. But if you get through all of the pillars, successfully distributing X growth rate to
each pillar, the answer is yes. So now we know how to find the minimum growth rate

14

(November 14, 2020) Fall 2020 mBIT Advanced Editorial

in O((N + M) logN log precision). The logN factor comes from the priority queue; the
log precision factor comes from the binary search.

We can find the maximum growth rate in a very similar way. We binary search with the
confirmation question question “Is there a way for each robot to distribute its
growth rate such that G(j) ≤ X for all pillars j”. If the answer to this question is
no, then the maximum growth rate cannot be less or equal than X; it must be greater
than X. What if the answer is yes? Like before, for the sake of contradiction assume that
when the robots are following their usual algorithm, there is a non-empty set S of pillars
that have greater than X growth rate. Then any robot with an interval containing any
pillar in S, that doesn’t have all its pillars in S, must be ignoring these pillars completely
(because they would never end up as the lowest pillars in their range). But if as few
robots as possible are contributing to the total growth rate of S, yet they are all still
surpassing X growth rate, then the answer to the confirmation question must have been
no. Once again, this is a contradiction. Therefore, the maximum growth rate is less
than or equal to X iff the answer to the confirmation question is yes.

You’ll notice the maximum growth rate binary search has a very similar structure as
the binary search for the minimum. Answering the confirmation question is also very
similar, except for this time you’re trying to get rid of as much of your growth rate as
possible at each pillar without going over X. If you end up with a non-empty priority
queue after pillar M , or if you ever have growth rate that “expires” because you reach
its right endpoint without using it all up, then the answer is no. Otherwise, the answer
is yes. The time complexity is the same.

At the end, we simply print the minimum growth rate divided by the maximum growth
rate. Other ways to answer the confirmation question may also have passed our time
limit, including using flow with a segment tree graph that balbit came up with.

Time complexity: O(N logN log precision)

Problem: Gabriel Wu
Flavortext: Timothy Qian
Editorial: Gabriel Wu
Code: C++, Java, Python

15

https://codeforces.com/profile/balbit
https://mbit.mbhs.edu/archive/2020f/solutions/BuildingAtlantis.cpp
https://mbit.mbhs.edu/archive/2020f/solutions/BuildingAtlantis.java
https://mbit.mbhs.edu/archive/2020f/solutions/BuildingAtlantis.py

	Climbing Trees
	Stone Piles
	Calendars
	The Duplicator
	Locked in the Past
	Night of the Candles
	Gemstones
	The Flock of Rams
	Textile Display
	Tanya's Revenge
	Sphinx Economics
	Building Atlantis

